Low Level Control Structures

Low-Level Control Structures Chapter Two

2.1

Chapter Overview

This chapter discusses “pure” assembly language control statenTémtdast section of this chapter
discussesybrid control structures that combine the features of dlbAgh level control statements with the
80x86 control instructions.

2.2

Low Level Control Structures

Until now, most of the control structures yoe’'seen and ka used in your programs\ebeen ery
similar to the control structures found in higkidelanguages li& Rascal, C++, anédda. While these con
trol structures mak learning assembly language easyythee not true assembly language statements.
Instead, the HLA compiler translates these control structures into a sequence of “pure” machine instructions
that achige the same result as the higtelecontrol structuresThis text uses the high el control strue
tures to &oid your haing to learn too much all at once. Wdawvever, it's time to put aside these higlhdé
language control structures and learw o write your programs irealassembly language, usingudevel
control structures.

2.3

Statement Labels

HLA low level control structures makextensive use oflabelswithin your code.A low level control
structure usually transfers control from one point in your program to another point in your pragnam.
typically specify the destination of such a transfer using a statement kalsghtement label consists of a
valid (unique) HLA identir and a colon, e.g.,

alLabel :

Of course, lile procedure, variable, and constant identifiers, you should attempt to choose descriptive and
meaningful names for your labels. The identifier “aLabel” is hardly descriptive or meaningful.

Statement labels have one important attribute that differentiates them from most other identifiers in
HLA: you don'’t have to declare a label before you use it. This is important, because low-level control struc-
tures must often transfer control to a label at some point later in the code, therefore the label may not be
defined at the point you reference it.

You can do three things with labels: transfer control to a label via a jump (goto) instruction, call a label
via the CALL instruction, and you can take the address of a label. There is very little else you can directly
do with a label (of course, there is very little else you would want to do with a label, so this is hardly a
restriction). The following program demonstrates two ways to take the address of a label in your program
and print out the address (using the LEA instruction and using the “&” address-of operator):

program | abel Deno;
#include(“stdlib.hhf”);

begi n | abel Denv;
I bl 1:
lea(ebx, Ibll);

lea(eax, Ibl2);
stdout. put(“& bl 1=$", ebx, “ & bl2=", eax, nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager51

LowLevelControlStructs

| bl 2:

end | abel Deno;

Program 2.1 Displaying the Address of Statement Labels in a Program

HLA also allavs you to initialize dwrd \variables with the addresses of statement labelsvel,
there are some restrictions on labels that appear in the initialization portiomsaties declarationsThe
most important restriction is that you must defihe statement label at the samelégel as the ariable
declaration. That is, if you reference a statement label in the initialization sectionariable declaration
appearing in the main program, the statement label must also be in the main prograsrseGoif you
take the address of a statement label in a lomdhble declaration, that symbol must appear in the same pro
cedure as the locahviable. The folloving program demonstrates the use of statement labedsiable ini
tialization:

program | abel Arrays;
#include(“stdlib.hhf”);

static
| abel s:dword[2] :=[&bll, &bl2];

procedur e hasLabel s;
static
stnmlbls: dword[2] :=[& abell, & abel2];

begi n hasLabel s;

| abel 1:
st dout . put
(
“stmLbls[0]=$", stnilLbls[0], nl,
“stmLbls[1]=$", stntlLbls[4], nl
);
| abel 2:

end haslLabel s;
begi n | abel Arrays;

hasLabel s();
| bl 1:

stdout.put(“labels[0]=$", labels[0], “ labels[1]=", l|abels[4], nl);
| bl 2:

end | abel Arrays;

Program 2.2 Initializing DWORD Variables with the Address of Statement Labels

Pager52 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Once in a really great while, yduheed to refer to a label that is not within the current procedtine.
need for this is sfitiently rare that this e will not describe all the details. Mever, you can look up the
details on HLAs LABEL declaration section in the HLA documentation should the need to dovémis e
arise.

2.4 Unconditional Transfer of Control (JMP)

TheJMP (jump) instruction unconditionally transfers control to another point in the proghane are
three forms of this instruction: a dirgatmp, and tw indirect jumpsThese instructions takone of the fal
lowing three forms:

jnp | abel ;
jmp(regsz);
jp(ey,);

For the frst (direct) jump abee, you normally specify the @et address using a statement label (see the
previous section for a discussion of statement labé&ls. statement label is usually on the same line as an
executable machine instruction or appears by itself on a line precedingeutable machine instruction.
The direct jump instruction is the most commonly used of these three forms. It is completaieatto a
GOTO statement in a highvel languagd Example:

<< statenents >>
jnp laterlnPgm

| at er | nPgm
<< staterents >>

The second form of the JMP instruction ebo‘jmp(regs,);”, is aregisterindirectjump instruction.
This instruction transfers control to the instruction whose address appears in thedspadifiit general pur
pose rgister To use this form of the JMP instruction you must load the spdaifjister with the address of
some machine instruction prior to theeeution of the IMPYou could use this instruction to implement a
state machine (sé¢8tate Machines and Indirect Jumps” on p@gé) by loading a rgister with the address
of some label atarious points throughout your program; thenyarg along diferent paths, a point in the
program can determine what path it\aed upon by xecuting the indirect jumpThe following short sam
ple program demonstratesvihgou could use the JMP in this manner:

program r egl ndJnp;
#include(“stdlib.hhf”);

static
i:int32;

begi n regl ndJnp;

/1 Read an integer fromthe user and set EBX to
/'l denote the success or failure of the input.

try

stdout.put(“Enter an integer value between 1 and 10: “);
stdin.get(i);
mov(i, eax);

1. Unlike high level languages, where your instructors usually forbid you to use GOTO statements, you will find that the use
of the JMP instruction in assembly language is absolutely essential.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager53

LowLevelControlStructs
if(eax in 1..10) then
nmov(&Goodl nput, ebx);
el se
nov(&val Range, ebx);
endi f;
exception(ex. ConversionError)
nov(&convError, ebx);
exception(ex.Val ueQut & Range)
nmov(&val Range, ebx);
endtry;
/'l Ckay, transfer control to the appropriate

/1 section of the programthat deals with
[/ the input.

jmp(ebx);
val Range:
stdout. put(“You entered a val ue outside the range 1..10" nl);
j mp Done;
convError:
stdout. put (“Your input contained illegal characters” nl);
j mp Done;

GoodlI nput :
stdout.put(“You entered the value “, i, nl);

Done:

end regl ndJnp;

Program 2.3 Using Register Indirect JMP Instructions

The third form of the JMP instruction is a memory indirect JMRis form of the JMP instruction
fetches a dward wvalue from the specé#d memory location and transfers control to the instruction at the
address specdd by the contents of the memory locatidihis is similar to the gister indirect IMP>zept
the address appears in a memory location rather than giséere The followving program demonstrates a
rather trivial use of this form of the JMP instruction:

pr ogr am nem ndJnp;
#include(“stdlib.hhf”);

static
Label Ptr:dword : = &stntLabel ;

Pager54 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures
begi n nmeni ndJnp;

stdout. put(“Before the JMP instruction” nl);
jnp(Label Ptr);

stdout. put (“This shoul d not execute” nl);
st m Label :
stdout.put(“After the Label Ptr label in the progranf nl);

end nem ndJnp;

Program 2.4 Using Memory Indirect JMP Instructions

Warning: unlike the HLA high lgel control structures, thewslevel JIMP instructions can get you into
a lot of trouble. In particulaif you do not initialize a gaster with the address of alid instruction and you
jump indirect through that géster, the results are undeéd (though this will usually cause a general protec
tion fault). Similarly if you do not initialize a dard variable with the address of ay& instruction, jump
ing indirect through that memory location will probably crash your program.

2.5

The Conditional Jump Instructions

Although the JMP instruction pvales transfer of control, it does not allyou to mak ary serious
decisionsThe 80x865 conditional jump instructions handle this tase conditional jump instructions are
the basic tool for creating loops and other conditionadgcatable statements ékkhe IFEENDIF statement.

The conditional jumps test one or moragh in the figs rgister to see if thematch some particular
pattern (just like the SETcinstructions). If the fig settings match the instruction control transfers to the tar
get location. If the matcthails, the CPU ignores the conditional jump ardceition continues with the xte
instruction. Some conditional jump instructions simply test the setting of the sign,averfiow, and zero
flags. Br example, after thexecution of a SHL instruction, you could test the caiyg fio determine if the
SHL shifted a one out of the H.O. bit of its operandelike, you could test the zer@ad after aTEST
instruction to see if gnspecifed bits were one. Most of the time waver, you will probably &ecute a con
ditional jump after a CMP instructiomhe CMP instruction sets thedls so that you can test for less than,
greater than, equalitgtc.

The conditional JMP instructions &khe follaving form:

Jcc | abel;

The “cc” in Xcindicates that you must substitute some character sequence that specifies the type of condi
tion to test. These are the same characters thecSEStruction uses. For example, “JS” stands for jump if
the sign flag is set.” A typical JS instruction looks like this

j s Val uel sNegat i ve;

In this exkample, the JS instruction transfers control toVleelsNegativestatement label if the sign flag is
currently set; control falls through to the next instruction following the JS instruction if the sign flag is clear.

Unlike the unconditional JMP instruction, the conditional jump instructions do not provide an indirect
form. The only form they allow is a branch to a statement label in your program. Conditional jump instruc-
tions have a restriction that the target label must be within 32,768 bytes of the jump instruction. However,
since this generally corresponds to somewhere between 8,000 and 32,000 machine instructions, it is unlikely
you will ever encounter this restriction.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager55

LowLevelControlStructs

Note: Intels documentation deifes \arious synoyms or instruction aliases for manonditional jump
instructions.The folloving tables list all the aliases for a particular instructidrese tables also list out the

opposite branche¥ou’ll soon see the purpose of the opposite branches.

Table 1. Jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite
JC Jump if carry Carry =1 JB, JNAE JNC
JNC Jump if no carry Carry =0 JNB, AE JC
JZ Jump if zero Zero=1 JE JNZ
JNZ Jump if not zero Zero=0 JNE JZ
JS Jump if sign Sign=1 JNS
JINS Jump if no sign Sign=0 JS
JO Jump if overflow Ovrflw=1 JNO
JNO Jump if no Ovrilv Ovrflw=0 JO
JP Jump if parity Parity = 1 JPE JNP
JPE Jump if parity gen Parity = 1 JP JPO
JNP Jump if no parity Parity = 0 JPO JP
JPO Jump if parity odd Parity = 0 JNP JPE

Page756

© 2001, By Randall Hyde

Version: 9/9/02

Table 2: Jcc Instructions for Unsigned Comparisons

Low Level Control Structures

Instruction Description Condition Aliases Opposites
JA Jump if above (>) Carry=0, JNBE JNA
Zero=0

JNBE Jump if not below or | Carry=0, JA JBE
equal (not <=) Zero=0

JAE Jump if above or equal Carry =0 JNC, JNB | JNAE
(>=)

JNB Jump if not below (not| Carry =0 JNC, JAE | JB
<)

JB Jump if below (<) Carry =1 JC, JNAE | JNB

JNAE Jump if not above or | Carry =1 JC, JB JAE
equal (not >=)

JBE Jump if below or equal Carry =1 or | JNA JNBE
(<=) Zero=1

JNA Jump if not above Carry =1 or| JBE JA
(not >) Zero=1

JE Jump if equal (=) Zero=1 JZ JNE

JNE Jump if not equal) Zero=0 JNZ JE

Beta Draft - Do not distribute © 2001, By Randall Hyde

Pager757

LowLevelControlStructs

Table 3: Jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite
JG Jump if greater (>) Sign = Ovrfv or JNLE ING
Zero=0

JNLE Jump if not less than oy Sign = Ovrflw or | JG JLE
equal (not <=) Zero=0

JGE Jump if greater than o Sign = Ovrflw JNL IJNGE
equal (>=)

JNL Jump if not less than | Sign = Ovrflw JGE JL
(not <)

JL Jump if less than (<) | Sign# Ovrflw IJNGE JNL

IJNGE Jump if not greater or | Sign# Ovrflw JL JGE
equal (not >=)

JLE Jump if less than or Sign# Ovrflw or ING JNLE
equal (<=) Zero=1

ING Jump if not greater than Sign# Ovrflw or JLE JG
(not >) Zero=1

JE Jump if equal (=) Zero=1 JZ JNE

JNE Jump if not equal) Zero=0 JNZ JE

Onebrief comment about the “opposites” column is in arder mary instances you will need to be
able to generate the opposite of a spebifanch instructions (lots okamples of this appear throughout the
remainder of this chapter)Vith only two exceptions, a &ry simple rule completely describesnhim gener
ate an opposite branch:

» If the second letter of thecdinstruction isnot an “n”, insert an “n” after the “j". E.g., JE
becomes JNE and JL becomes JNL.
e If the second letter of thed instructionis an “n”, then remove that “n” from the instruction.
E.g., ING becomes JG and JNE becomes JE.

The two exceptions to this rule are JPE (jump if parity is even) and JPO (jump if parity is odd). These excep
tions cause few problems because (a) you'll hardly ever need to test the parity flag, and (b) you can use the
aliases JP and JNP synonyfosJPE and JPOrhe “N/No N” rule applies to JP and JNP.

Though youknowthatJGEis the opposite olL, get in the habit of usingNL rather thanlGE as the
opposite jump instruction for JIt's too easy in an important situation to start thinking “greater is the-oppo
site of less” and substituf& instead. You can avoid this confusion by always using the “N/No N” rule.

The 80x86 conditional jump instructiorvgiyou the ability to split progranofl into one of tvo paths
depending upon some logical condition. Suppose yaut W increment th&X register if BX is equal to
CX.You can accomplish this with the faiing code:

cnp(bx,

cx);

jne SkipStnms;

Page758

© 2001, By Randall Hyde

Version: 9/9/02

Low Level Control Structures

inc(ax);
SkipStnts:

The trick is to use theppositebranch to skip over the instructions you want to execute if the condition is
true. Always use the “opposite branch (N/no N)” rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops. For example, the following code
sequence reads a sequence of characters from the user and stores each character in successive elements of ¢
array until the user presses the Enter key (carriage return):

nmov(O, edi);
RdLnLoop:
stdin.getc(); /1 Read a character into the AL register.
nmov(al, Input[edi]); /1 Store away the character
inc(edi); /1 Move on to the next character
cnp(al, stdio.cr); /1 See if the user pressed Enter
j ne RdLnLoop;

For more information concerning the use of the conditional jumps to synthesize IF statements, loops, and
other control structures, séémplementing Common Control Structures in Assembly Language” on
page759.

Like the SEEc instructions, the conditional jump instructions come ia basic catgories — those that
test specifi processor #igs (e.g., JZ, JC, JNO) and those that test some condition (less than, greater than,
etc.).When testing a condition, the conditional jump instructions almestyal follov a CMP instruction.
The CMP instruction sets theafls so you can use A,JAE, JB, JBE, JE, or JNE instruction to test for
unsigned less than, less than or equal, equaligéguality greater than, or greater than or equal. Simulta
neously the CMP instruction sets thedls so you can also do a signed comparison using the JL, JLE, JE,
JNE, JG, and JGE instructions.

The conditional jump instructions only testdt, thg do not aflect ary of the 80x86 #gs.

2.6 “Medium-Level” Control Structures: JT and JF

HLA provides two special conditional jump instructions: JT (jump if true) and JF (jungséf. These

instructions tak the follaving syntax:

jt(bool ean_expression) target_|I abel;

jf(bool ean_expression) target_I abel;
Theboolean_expressias the standard HLA boolean expression allowed by IF..ENDIF and other HLA high
level language statements. These instructions evaluate the boolean expression and jump to the specified
label if the expression evaluates true (JT) or false (JF).

These are not real 80x86 instructions. HLA compiles them into a sequence of one or more 80x86
machine instructions that achieve the same result. In general, you should not use these two instructions in
your main code; they offer few benefits over using an IF..ENDIF statement and they are no more readable
than the pure assembly language sequences they compile into. HLA provides these “medium-level” instruc-
tions so that you may create your own high level control structures using macros (see the chapters on Mac-
ros, the HLA Run-Time Language, and Domain Specific Languages for more details).

2.7 Implementing Common Control Structures in Assembly Language

Since a primary goal of this chapter is to teach you tmuse the lo-level machine instructions to
implement decisions, loops, and other control constructsputdve wise to shve you hav to simulate

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager59

LowLevelControlStructs

these high Ieel statements using “pure” assembly languagee folloving sections prade this informa
tion.

2.8

Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that switches betwses tw
sible eecution paths based on some condition. Normally (though m@tys), conditional instruction
sequences are implemented with the conditional jump instructions. Conditional instructions correspond to
the IE.THEN..ENDIF statement in HLA:

if(expression) then
<< statenents >>
endif;

Assembly language, as usualfeos$ much more flexibility when dealing with conditional statements: Con
sider the following C/C++ statement:

if(((x<y)&(z>t)) ||l (al=Db))
stnt1;

A “brute force” approach to cearting this statement into assembly language might produce:

nov(X, eax);

cnp(eax, y);

setl(bl); /] Store X<Y in bl.

nov(z, eax);

cnp(eax, t);

setg(bh); [/l Store Z > T in bh.

and(bh, bl); /1 Put (X<Y) && (Z>T) into bl.

nov(a, eax);

cnp(eax, b);

setne(bh); // Store A!= B into bh.

or(bh, bl); [l Put (XY) && (2>T) || (Al=B) into bl
je SkipStmi,; /1 Branch if result is false (ORsets Z-Flag if false).

<Code for stntl goes here>

Ski pSt i 1:

As you can see, it tals a considerable number of conditional statements just to process the expression in the
example above. This roughly corresponds to the (equivalent) C/C++ statements:

bl =x <vy;

bh =z > t;

bl = bl && bh;

bh = a !'= b;

bl = bl || bh;

if(bl)
stntl;

Now compare this with the following “improved” code:

nov(a, eax);
cnp(eax, b);
jne DoStnt;

nov(X, eax);
cnp(eax, y);
jnl SkipStnt;
nov(z, eax);
cnp(eax, t);
jng SkipStnt;

Pager60 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

DoSt nt :
<< Place code for Stntl here >>
Ski pStmt :

Two things should be apparent from the code sequences:divst, a single conditional statement in
C/C++ (or some other HLL) may requireveeal conditional jumps in assembly language; secogdna
tion of compl& expressions in a conditional sequence céecathe eficieng/ of the codeTherefore, care
should be xercised when dealing with conditional sequences in assembly language.

Conditional statements may be beokdavn into three basic cajeries: IF statements, SWITCH/CASE
statements, and indirect jumpde following sections will describe these program structures, toouse
them, and he to write them in assembly language.

2.8.1 IF.THEN..ELSE Sequences
The most common conditional statement is theTHEN or IE.THEN..ELSE statemenf hese tw
statements takthe form shan in Figure 2.1
IF..THEN..ELSE..ENDIF IF.. THEN..ENDIF
Test for some conditior|\ Test for some conditior||
Execute tis block of v
staements if the
condition is true. Execute ts block d
staements if the
I condition is true.
Execute tls block of
staements if the <+ ‘ >
condition is fals
| Continue executio
down hereafter the
conpletion of the
Continue execution THEN a if skipping the
down heresfter the THEN Hock.
completion of the
THEN a ELSE blocks
Figure 2.1 IF. THEN..ELSE..ENDIF and IF..ENDIF Statement Flow

The IE.ENDIF statement is just a special case of th&LISE..ENDIF statement (with an empty ELSE
block). Therefore, wdl only consider the more general EELSE..ENDIF form.The basic implementation
of an IE. THEN..ELSE statement in 80x86 assembly language looks sometlartgitk

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager61

LowLevelControlStructs

{Sequence of statenents to test sone condition}
Jcc H seCode
{Sequence of statements corresponding to the THEN bl ock}

jnp Endaf I F

E seCode:
{Sequence of statenents corresponding to the ELSE bl ock}

EndCf | F:

Note: &crepresents some conditional jump instruction.
For example, to convert the C/C++ statement:

if(a==hb)
c =d;

el se
b=>b+ 1

to assembly language, you could use the folig 80x86 code:

nov(a, eax);
cnp(eax, b);
jne El sePart;
nmov(d, ¢);
jnp EndCf I f;

Bl seBl k:
inc(b);
EndCr1f:

For simple a&pressions lik “(a == b)” generating the proper code for arBESE..ENDIFstatement is
almost trvial. Should the xpression become more comypléhe associated assembly language code com
plexity increases as well. Consider the fallng C/C++ IF statement presented earlier:

if(((x>y)&&(z<t)) || (al=b))
c =d;
When processing compéF statements such as this one, Yidiuhd the comersion task easier if you
break this IFstatement into a sequence of threéedént IFstatements as folles:

iflal=b) C=0DO
elseif(x >y)
if(z<t)
C=0D

This corversion comes from the foling C/C++ equialences:
if(exprl & expr2) stnt;
is equvalent to
if(exprl) if(expr2) stnt;
and
if(exprl || expr2) stnt;
is equvalent to
if(exprl) stni;
else if(expr2) stn;
In assembly language, the formersiiatement becomes:

it ((x>y)&(z<t)) || (al=b))
/1 c =d,

Pager62 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

nov(a, eax);
cnp(eax, b);
j ne Dol F;
mov(X, eax);
cnp(eax, y);
jng EndC | F;
nov(z, eax);
cnp(eax, t);
jnl EndCf I f;
Dol f:
nmov(d, c);
EndC | F:

As you can probably tell, the code necessary to test a condition can easily become mosetbample
the statements appearing in the EL&HE THEN blocks.Although it seems soméat paradoxical that it
may talke more dbrt to test a condition than to act upon the results of that condition, it happens all the time.
Therefore, you should be prepared for this situation.

Probably the biggest problem with the implementation of caxnpdaditional statements in assembly
language is trying todure out what yowe done after yowe written the code. Probably the biggestaaev
tage high leel languages &r over assembly language is thapeessions are much easier to read and-com
prehend in a high el languageThis is one of the primary reasons HLA supports higielléanguage
control structuresThe high leel language ersion is self-documenting whereas assembly language tends to
hide the true nature of the cod#erefore, well-written comments are an essential ingredient to assembly
language implementations iéfthen..else statementsAn elegant implementation of thexample abwe is:

I lF((X>Y) & (Z<T)) R(A'=B C=D
/1 1npl emented as:
/1 1F (A= B) THEN QOTO Dol F;

mov(a, eax);
cnp(eax, b);
jne Dol F;

/1 if NOT (X >Y) THEN GOTO EndCf I F;

nov(X, eax);

cnp(eax, Yy);
jng EndCf | F;

/1 1F NOT (Z < T) THEN GOTO EndO I F :

nov(z, eax);

cnp(eax, t);
jnl EndCf I f;
/1 THEN Bl ock:
Dol f:
nmov(d, c);

/1 End of |F statenent
EndCr I F:
Admittedly, this appears to be goingerboard for such a simpleamnple.The folloving would proba
bly sufice:
it ((x>y) & (z<t))|] (al=b)) c=4d
/1 Test the bool ean expression:

nov(a, eax);
cnp(eax, b);
j ne Dol F;

mov(X, eax);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager63

LowLevelControlStructs

cnp(eax, y);
jng EndCf | F;
nov(z, eax);

cnp(eax, t);
jnl EndCf I f;

;. THEN Bl ock:

Dol f:
nmov(d, c);

; End of |F statenent
EndO | F:

However, as your IBtatements become comyl¢he density (and quality) of your comments become more
and more important.

2.8.2 Translating HLA IF Statements into Pure Assembly Language

Translating HLA IF statements into pure assembly languageryseasy The booleangressions that
the HLA IF supports were spediéilly chosen toxpand into a fe simple machine instruction3.he follow-
ing paragraphs discuss the eersion of each supported booleapression into pure machine code.

if(flag_specification then <<stmts>>endif;

This form is, perhaps, the easiest HLA IF statement teectnTo execute the code immediately fol
lowing theTHEN keyword if a particular fig is set (or clear), all you need do is skiprdhe code if thedly
is clear (set).This requires only a single conditional jump instruction for implementation as theifajlo
examples demonstrate:

/1 if(@) theninc(eax); endif;
j nc Ski pThel nc;
inc(eax);
Ski pThel nc:
I/l if(@s) then neg(eax); endif;
js Ski pTheNeg;
neg(eax);

Ski pTheNeg:

if(register) then <<stmts>>endif;

This form of the IF statement uses TEST instruction to check the speediraister for zero. If the
register contains zerodfse), then the program jumps around the statements afférEié clause with a JZ
instruction. Cowerting this statement to assembly language requildsSaT instruction and a JZ instruc
tion as the follaing examples demonstrate:

I/l if(eax) then nov(false, eax); endif;

test(eax, eax);
j z Dont Set Fal se;

mov(fal se, eax);

Pager64 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures
Dont Set Fal se:
/1 if(al) then mov(bl, cl); endif;

test(al, al);
j Z noMove;

nov(bl, cl);

nohbve:

if('register) then <<stmts>>endif;

This form of the IF statement uses THeST instruction to check the speedirayister to see if it is zero.
If the register is not zero (true), then the program jumps around the statements aftéENelause with a
JNZ instruction. Coverting this statement to assembly language requifdsST instruction and a JNZ
instruction in a manner identical to the\goeis examples.

if(boolean_variablg then <<stmts>>endif;

This form of the IF statement compares the booleaialle aginst zero @lse) and branches around
the statements if theaviable does contairalise. HLA implements this statement by using the CMP instruc
tion to compare the booleaanable to zero and then it uses a JZ (JE) instruction to jump around the state
ments if the ariable is &lse. The follonving example demonstrates the eension:

// if(bool) then mov(O, al); endif;

cnp(bool, false);
j e Ski pZer oAL;

nmov(O, al);
Ski pZer oAL:

if('boolean_variable then <<stmts>>endif;

This form of the IF statement compares the booleaiable aginst zero @lse) and branches around
the statements if theaviable contains true (i.e., the opposite condition of theique ecample). HLA
implements this statement by using the CMP instruction to compare the boalidrevto zero and then it
uses a JNZ (IJNE) instruction to jump around the statements ifatfeble contains trueThe following
example demonstrates the gersion:

/1 if(!'bool) then nmov(O, al); endif;

cnp(bool, false);
j ne Ski pZer 0AL;

nov(0, al);

Ski pZer oAL:

if(mem_reg relop mem_reg_corjsthen <<stmts>>endif;

HLA translates this form of the IF statement into a CMP instruction and a conditional jump that skips
over the statements on the opposite condition spddiy therelop operator The folloving table lists the
correspondence between operators and conditional jump instructions:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager65

LowLevelControlStructs

Table 4: |F Statement Conditional Jump Instructions

Conditional jump Conditional ium
instruction if both | . lona’jump
instruction if either
operands are o
: operand is signed
unsigned
=or== JNE JNE
<>orl= JE JE
< JNB JNL
<= JNBE JNLE
> JNA JING
>= JNAE IJNGE

Here are a f& examples of IF statements translated into pure assembly language thapressiens
involving relational operators:

I/l if(al ==ch) theninc(cl); endif;

cnp(al, ch);
j ne Skipl ncCL;

inc(cl);
Ski pl ncCL:
/1 if(ch>=*a) then and($5f, ch); endif;

cnp(ch, "a’);
j nae Not Lower Case

and($5f, ch);
Not Lower Case:
/1 if((type int32 eax) < -5) then nov(-5, eax); endif;

cnp(eax, -5);
jnl Dontd i pEAX

mov(-5, eax);
Dont A i pEAX:
/1 if(si <>di) theninc(si); endif;

cnp(si, di);
je DontlncSl;

inc(si);
Dont I ncSl :
Version: 9/9/02

Pager66 © 2001, By Randall Hyde

Low Level Control Structures

if(reg/memin LowConst.HiConst) then <<stmts>>endif;

HLA translates this IF statement into a pair of CMP instructions and a pair of conditional jump instructions.

It compares the register or memory location against the lower valued constant and jumps if less than (below)
past the statements after the THEN clause. If the register or memory location’s value is greater than or equal
to LowConst the code falls through to the second CMP/conditional jump pair that compares the register or
memory location against the higher constant. If the value is greater than (above) this constant, a conditional
jump instruction skips the statements in the THEN clause. Example:

// if(eax in 1000..125 000) then sub(1000, eax); endif;
cnp(eax, 1000);
j b Dont Sub1000;
cnp(eax, 125 000);
j a Dont Sub1000;
sub(1000, eax);
Dont Sub1000:

/1 if(132in-5..5) then add(5, 132); endif;

j I NoAdd5;
cnp(132, 5);
j g NoAdd5;
add(5, i32);
NoAdd5:

if(reg/memnot in LowConst..HiCons) then <<stmts>>endif;

This form of the HLA IF statement tests aister or memory location to see if italve is outside a
specifed range.The implementation isary similar to the code ale exception you branch to thEHEN
clause if the alue is less than tHeowConstvalue or greater than tti&iConstvalue and you branchver the
code in theTHEN clause if the alue is within the range speeifi by the tw constants.The following
examples demonstrate Wwdo do this cowersion:

// if(eax not in 1000..125 000) then add(1000, eax); endif;
cnp(eax, 1000);
j b Add1000;

cnp(eax, 125_000);
j be Ski pAdd1000;

Add1000:
add(1000, eax);

Ski pAdd1000:
// if(132 not in-5..5) theen nov(0, 132); endif;
j | Zeroi 32;

cnp(132, 5);
j I e Skipzero;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager67

LowLevelControlStructs

Zer oi 32:
nov(0, 132);

Ski pZer o:

if(regg in CSetVar/CSetCongtthen <<stmts>> endif;

This statement checks to see if the character in the gokeifiht-bit rgister is a member of the speci
fied character set. HLA emits code that is similar to theviolig for instructions of this form:

nmovzx(regg, eax);
bt (eax, CsetVar/GCsetConst);
jnc SkipPast Stnts;

<< stnts >>

Ski pPast St nt s:

This example modifies the EAX register (the code HLA generates does not, because it pushes and pops the
register it uses). You can easily swap another register for EAX if you've got a value in EAX you need to pre
serve. In the worst case, if no registers are available, you can push EAX, execute the MOVZX and BT
instructions, and then pop EAX’s value from the stack. The following are some actual examples:

/1 if(al in{'a..”z’}) then or($20, al); endif;
novzx(al, eax);

bt(eax, {*a ..z}); [// See if we’ve got a | ower case char.
j nc Dont Convert Case;

or($20, al); /1 Convert to uppercase.

Dont Convert Case:

/1 if(chin{'0..”9"}) then and($f, ch); endif;

push(eax);

novzx(ch, eax);

bt(eax, {*a.."z2'}); [// See if we’ve got a | ower case char.
pop(eax);

j nc Dont Convert Num

and($f, ch); /1 Convert to binary form

Dont Convert Num

2.8.3 Implementing Complex IF Statements Using Complete Boolean Evaluation

The previous section did not discusswdo translate boolearxpressions ivolving conjunction (AND)
or disjunction (OR) into assembly languagddis section will bgin that discussionThere are tw different
ways to cowmert comple boolean rpressions iwolving conjunction and disjunction into assembly-lan
guage: using complete boolearakiation or short circuitv@luation. This section discusses complete bool
ean aluation. The net section discusses short circuit boolegal@ation, which is the scheme that HLA
uses when comerting compl& boolean gpressions to assembly language.

Using complete boolearvaluation to galuate a boolearxpression for an IF statement is almost iden
tical to cowerting arithmetic epressions into assembly language. Indeed, thegu®\olume coers this
conversion process (sékogical (Boolean) Expressions” on pagé4). About the only thing wrth noting

Pager68 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

about that process is that you do not need to store the ultimate boolean result imsaohe vonce the
evaluation of the xpression is complete you check to see if yotelablse (zero) or true (one, or non-zero)
result to determine whether to branch aroundTtHEN portion of the IF statemenfs you can see in the
examples in the preceding sections, you can often usethéhfat the last boolean instruction (AND/OR)
sets the zerody if the result isdlse and clears the zeradif the result is trueThis lets you eoid explic-

itly testing the result. Consider the follmg IF statement and its cegrsion to assembly language using
complete booleanvaluation:

if(((x<y)&(z>t)) [l (al=Db))
Stntl;

mov(X, eax);

cnp(eax, y);

setl(bl); /] Store x<y in bl.

nov(z, eax);

cnp(eax, t);

setg(bh); // Store z >t in bh.

and(bh, bl); /1 Put (x<y) &% (z>t) into bl.

nov(a, eax);

cnp(eax, b);

setne(bh); // Store a!=b into bh.

or(bh, bl); /1 Put (x<y) & (z>t) || (a !=Db) into bl
je SkipStntl; /1 Branch if result is false ((Rsets Z-Flag if false).

<< Code for Stnmt1l goes here >>

Ski pSt nt 1:

This code computes a booleaiue in the BL rgister and then, at the end of the computation, tests this
resulting \alue to see if it contains true @ige. If the result isafse, this sequence skipgo the code asso
ciated withStmtl The important thing to note in thisxample is that the program wilkecute each and
every instruction that computes this boolean result (up to the JE instruction).

For more details on complete booleanaleation, seélLogical (Boolean) Expressions” on pagé4

284

Short Circuit Boolean Evaluation

If you are willing to spend a little morefeft studying a compbeboolean gpression, you can usually
corvert it to a much shorter andster sequence of assembly language instructions stsamgcircuit book
ean @aluation Short-circuit booleanvaluation attempts to determine whether goression is true oafse
by executing only a portion of the instructions that compute the comptptession. By ecuting only a
portion of the instructions, the&uation is often muclakter For this reason, plus thadt that short circuit
boolean ealuation doesit’require the use of gntemporary rgisters, HLA uses short circuivauation
when translating compleboolean gpressions into assembly language.

To understand o short-circuit booleanvaluation vorks, consider thexpression A && B”. Once
we determine thah is false, there is no need teaduate B since there is nawthe &pression can be true.
If A andB represent subx@ressions rather than simplariables, you can @ to see the sangs that are
possible with short-circuit booleanaduation. As a concretexample, consider the subjmession “((x<y)
&& (z>t))” from the previous section. Once you determine thét not less thaw, there is no need to check
to see ifzis greater tham since the pression will be dlse rgardless ofz andt’s values. The followving
code fragment shves hav you can implement short-circuit boolearakiation for this gpression:

[if((x<y) &k (z>t)) then ...

nov(X, eax);
cnp(eax, Yy);
jnl TestFails;
nov(z, eax);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager69

LowLevelControlStructs

cnp(eax, t);
jng TestFails;

<< Code for THEN cl ause of |F statenent >>

Test Fai | s:

Notice hav the code skips any further testing once it determinestisatot less thay. Of course, i is
less thary, then the program has to testo see if it is greater than if not, the program skips over the
THEN clause. Only if the program satisfies both conditions does the code fall through to the THEN clause.

For the logical OR operation the technique is similar. If the first sub-expression evaluates to true, then
there is no need to test the second operand. Whatever the second operand’s value is at that point, the full
expression still evaluates to true. The following example demonstrates the use of short-circuit evaluation
with disjunction (OR):

/[l if(ch<*A || ch>"'Z) then stdout.put(“Not an upper case char”); endif;

cnp(ch, "A),
jb ItsNot UC
cnp(ch, *Z);
jna It WasUC

I t sNot UC
stdout. put (“Not an upper case char”);

It WasUC.

Since the conjunction and disjunction operators are comweitgiu canealuate the left or right oper
and frst if it is more cowmenient to do so.As one last xample in this section, consider the full boolean
expression from the pw@us section:

Iif(((x<y)& (z>t)) || (a'=b)) Stni;

nov(a, eax);
cnp(eax, b);
jne DoStnt1,;

nmov(X, eax);
cnp(eax, y);
jnl SkipStntl;
nov(z, eax);
cnp(eax, t);
jng SkipsStntl;

DoSt nt 1:
<< Code for Stntl goes here >>

Ski pStnt 1:

Notice hav the code in this example chose to evaluate “a != b” first and the remaining sub-expression last.
This is a common technique assembly language programmers use to write better code.

2.8.5 Short Circuit vs. Complete Boolean Evaluation

One fict about complete booleamatuation is that\eery statement in the sequence wieeute when
evaluating the epression. Short-circuit booleawaduation may not require theexution of gery statement
associated with the boolearpeession.As youVve seen in the pvéous two sections abee, code based on
short-circuit ®aluation is usually shorter andstef. So it would seem that short-circuivauation is the
technique of choice when oarting compl& boolean gpressions to assembly language.

Pager70 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Sometimes, unfortunatelghort-circuit booleanvaluation may not produce the correct result. In the
presence ofide-efectsin an epression, short-circuit booleamaduation will produce a diérent result than

complete booleanvaluation. Consider the folldng C/C++ &le:
if((x==y) & (++z 1=0)) stm

Using complete boolearvauation, you might generate the following code:

mov(X, eax); Il See if x ==y

cnp(eax, y);

sete(bl);

inc(z); [l ++z

cnp(z, 0); /1 See if increnented z is zero.
setne(bh);

and(bh, bl); [/l Test x ==y & ++z 1= 0

jz SkipStnt;

<< code for stnt goes here >>

Ski pSt i :

Using short-circuit boolearnvaluation, you might generate the following code:

nov(X, eax); I/l See if x ==y

cnp(eax, y);

jne SkipStnt;

inc(z); [l ++z

cnp(z, 0); /1 See if increnented z is zero.
je SkipStnt;

<< code for stnt goes here >>

Ski pStnt :

Notice a ‘ery subtle, bt important diference between thesedworversions: if it turns out thatis
equal toy, then the fist version abwe still increments and compares it to zero before xeeutes the code
associated witlstmt the short-circuit @rsion, on the other hand skipgeothe code that incremert it
turns out thak is equal toy. Therefore, the bek@r of these tw code fragments is dérent with respect to
what happens toif x is equal toy. Neither implementation is particularly wrong, depending on the circum
stances you may or may noamt the code to incremenif x is equal toy. However, it is important that you
realize that these twschemes produce fiifent results so you can choose an appropriate implementation if

the efect of this code om matters to your program.

Many programs tak adwantage of short-circuit booleanatuation and rely upon thadt that the pro
gram may not\aluate certain components of theression.The folloving C/C++ code fragment demon
strates what is probably the most commwaneple that requires short-circuit booleamalaation:

if(Ptr 1= NULL && *Ptr == ‘a’) stnt

If it turns out thaPtr is NULL in this IF statement, then the expression is false and there is no need to eval
uate the remainder of the expression (and, therefore, code that uses short-circuit boolean evaluation will not
evaluate the remainder of this expression). This statement relies upon the semantics of short-circuit boolean
evaluation for correct operation. Were C/C++ to use complete boolean evaluation, and the Rtarcle

tained NULL, then the second half of the expression would attempt to dereference a NULL pointer (which
tends to crash most programs). Consider the translation of this statement using complete and short-circuit

boolean evaluation:

/1 Conpl et e bool ean eval uati on:

2. Note that this does not always mean that the program will run faster. Jumps (conditional or otherwise) are often very slow
executing instructions. Sometimes it’s faster to execute several instructions in a row rather than execute a few instructions

that include a conditional jump.

Beta Draft - Do not distribute © 2001, By Randall Hyde

Pager71

LowLevelControlStructs

nov(Ptr, eax);

test(eax, eax); Il Check to see if EAX is zero (NULL is zero).
setne(bl);

nov([eax], al); [l Get *Ptr into AL.

cnp(al, “a’);

sete(bh);

and(bh, bl);

jz SkipStnt;

<< code for stnt goes here >>

Ski pStnt :
Notice in this @ample that ifPtr contains NULL (zero), then this program will attempt to access the
data at location zero in memory via the ‘rfi¢eax], al);” instruction. Under most operating systems this

will cause a memory accesauft (general protectiorafilt). Nav consider the short-circuit boolean gen
sion:

// Short-circuit bool ean eval uation

nov(Ptr, eax); /1 See if Ptr contains NULL (zero) and
test(eax, eax); /1 imediately skip past Stnt if this
jz SkipStnt; /'l is the case

nov([eax], al); /1 1f we get to this point, Ptr contains
cnp(al, ‘a); /1 a non-NULL val ue, so see if it points
jne SkipStnt; /1l at the character ‘a’.

<< code for stnt goes here >>
Ski pStmt :

As you can see in thiskample, the problem with dereferencing the NULL pointer doesn’t exi§ttr fon
tains NULL, this code skips over the statements that attempt to access the memoryPaddoesains.

2.8.6

Efficient Implementation of IF Statements in Assembly Language

Encoding IF statementsfigfiently in assembly language &ka bit more thought than simply choosing
short-circuit @aluation wer complete boolearvaluation. To write code that>@cutes as quickly as possible
in assembly language you must carefully analyze the situation and generate the code appropedtaly
lowing paragraphs pwide some suggestions you can apply to your programs tomfieir performance.

Know your datal

A mistake programmers often maks the assumption that data is random. In realéta is rarely ran
dom and if you kne the types of alues that your program commonly uses, you can use thiddahge to
write better codeTo see hw, consider the follwving C/C++ statement:

if((a==Db) & (c<d)) ++;

Since C/C++ uses short-circuitaduation, this code will test to seeaifs equal tdo. If so, then it will
test to see it is less thaml. If you expectato be equal tdo most of the time Wt dont expectc to be less
thand most of the time, this statement wikexute slaver than it should. Consider the follmg HLA
implementation of this code:

nov(a, eax);
cnp(eax, b);
jne Dontlncl;

mov(¢, eax);

Pager72 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

cnp(eax, d);

jnl Dontlncl;
inc(i);

Dont I ncl :

As you can see in this codegifs equal td most of the time andis not less thad most of the time, you

will have to execute the first three instructions nearly every time in order to determine that the expression is
false. Now consider the following implementation of the above C/C++ statement that takes advantage of
this knowledge and the fact that the “&&” operator is commutative:

nov(c, eax);
cnp(eax, d);
jnl Dontlncl;

nov(a, eax);

cnp(eax, b);

jne Dontlncl;
inc(i);

Dont I ncl :

In this ekample the codert checks to see dis less tham. If most of the time is less tham, then
this code determines that it has to skip to the IRloaltincl after executing only three instructions in the typ
ical case (compared with six instructions in thevimes eample). This fact is much more afous in
assembly language than in a higieldanguage; this is one of the main reasons that assembly programs are
often faster than their high Vel language counterparts: optimizations are morgool in assembly lan
guage than in a highvel language. Of course, theykhere is to understand the beioa of your data so
you can mak intelligent decisions such as the onevabo

Rearranging Expressions

Even if your data is random (or you cadetermine he the input alues will afect your decisions),
there may still be some bertetid rearranging the terms in youxpeessions. Some calculations dédfr
longer to compute than othersorfexample, the DIV instruction is much ster than a simple CMP instruc
tion. Therefore, if you hee a statement likthe follaving you may vant to rearrange thegression so that
the CMP comesif§t:

if((X %10 =0) 8 (x !'=y) +x;

Corverted to assembly code, this IF statement becomes:

nmov(X, eax); /1 Conpute X % 10

cdq(); /1 Mist sign extend EAX -> EDX EAX
inod(10, edx:eax); /1 Renenber, renainder goes into EDX
test(edx, edx); /1 See if EDXis zero.

jnz SkiplF

nmov(X, eax);
cnp(eax, y);
je SkiplF

inc(x);

Ski pl F:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager73

LowLevelControlStructs

The IMOD instruction is &ry expensve (often 50-100 times sher than most of the other instructions
in this ekample). Unless it is 50-100 times moreelikthan the remainder is zero rather than x is equal to y
it would be better to do the comparisastfiand the remainder calculation aftards:

nov(X, eax);

cnp(eax, y);
je SkiplF
nov(X, eax); /1 Conpute X % 10
cdq(); /1 Mist sign extend EAX -> EDX EAX
inod(10, edx:eax); /1 Renenber, renainder goes into EDX
test(edx, edx); /1 See if EDXis zero.
jnz SkiplF
inc(x);
Ski pl F:

Of course, in order to rearrange themssion in this mannethe code must not assume the use of
short-circuit @aluation semantics (since the && and || operators are not comvadutdtie code must com
pute one subgression before another).

Destructuring Your Code

Although there is a lot of good things to be said about structured programming techniques, there are
some dravbacks to writing structured code. Spegfly, structured code is sometimes ledscimt than
unstructured code. Most of the time this is tolerable because unstructured cdamilstdiread and main
tain; it is often acceptable to sa@#isome performance ixahange for maintainable code. In certain
instances, hwever, you may need all the performance you can get. In those rare instances you might choose
to compromise the readability of you code in orderdim gome additional performance.

One classic ay to do this is to use code wement to mee code your program rarely uses out of the
way of code thatxecutes most of the time.oFexample, consider the folldng pseudo C/C++ statement:

if(See_ If_an_Error_Has_Courred)

{
<< Statenents to execute if no error >>
}
el se
{
<< BError handling statenents >>
}

In normal code, one does notpect errors to be frequentherefore, you wuld normally &pect the
THEN section of the alve IF to execute &r more often than the ELSE clauSéhe code abee could trans
late into the follving assembly code:

cnp(See_If _an Error_Has_Qcurred, true);
j e Handl eTheEr r or

<< Statenents to execute if no error >>
jnp EndC | F;

Handl eTheError:
<< BError handling statenents >>

EndCf 1 f:
Notice that if the epression isdlse this codealls through to the normal statements and then jumps

over the error handling statements. Instructions that transfer control from one point in your program to

Pager74 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

another (e.g., JMP instructions) tend to bevsldét is much &ster to gecute a sequential set of instructions
rather than jump all\er the place in your program. Unfortunatehe code abe doesrt allow this. One
way to rectify this problem is to me the ELSE clause of the code s@rhere else in your progranThat

is, you could revrite the code as follgs:

cnp(See_|f_an Error_Has_Qcurred, true);
j e Handl eTheEr r or

<< Statenents to execute if no error >>
EndCf I f:

At some other point in your program (typically after a JMP instruction) yaudhnsert the following code:

Handl eTheError:
<< Error handling statenents >>
jnp EndCrIf;

Note that the program igrary shorter The JMP you remeed from the original sequence winds up at
the end of the ELSE clause. \Wever, since the ELSE clause rarelyeeutes, maing the JMP instruction
from theTHEN clause (whichxecutes frequently) to the ELSE clause is a big performance win because the
THEN clause recutes using only straight-line codé@his technique is surprisingly fettive in mary
time-critical code sgments.

There is a dierence between writindestructued code and writinginstructued code. Unstructured
code is written in an unstructureéwto bgin with. It is generally hard to read, fitiult to maintain, and it
often contains defects. Destructured code, on the other hand, starts out as structured code ardayou mak
conscious decision to eliminate the structure in ordeaio @ small performance boost. Generalbu've
already tested the code in its structured form before destructurifietrefore, destructured code is often
easier to wrk with than unstructured code.

Calculation Rather than Branching

On maly processors in the 80x8arhily, branches areevy expensve compared to marother instrue
tions (perhaps not as bad as IMOD or IDiut typically an order of magnitudeonse than instructions kk
ADD and SUB). Br this reason it is sometimes bettersteaite more instructions in a sequence rather than
fewer instructions that irolve branching. & example, consider the simple assignment “EAX =
abs(EAX);” Unfortunatelythere is no 80x86 instruction that computes the absoaltes of an intger
value. The olvious way to handle this is with an instruction sequence tlite follaving:

test(eax, eax);
jns ItsPositive;

neg(eax);
I tsPositive:

However, as you can plainly see in thigaenple, it uses a conditional jump to skipeo the NEG
instruction (that creates a poedivalue in EAX if EAX was ngative). Nav consider the follwing
sequence that will also do the job:

/1 Set EDX to $FFFF_FFFF if EAX is negative, $0000_0000 if EAX is
/1l zero or positive:

cdq();

/1 1f EAX was negative, the following code inverts all the bits in EAX
/] otherwise it has no effect on EAX

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager75

LowLevelControlStructs
xor (edx, edx);

/1 1f EAX was negative, the followi ng code adds one to EAX, otherw se
// it doesn't modify EAX s val ue.

and(1, edx); /1 EDX=0o0r 1 (1if EAX was negative).
add(edx, eax);

This code will ivert all the bits in EAX and then add one to EAX if EAXasvngative prior to the
sequence (i.e., it tak the tw’s complement [rgates] the glue in EAX). If EAX was zero or posite, then
this code does not change tteue in EAX.

Note that this sequence &k four instructions rather than the three thevipus example requires.
However, since there are no transfer of control instructions in this sequence, iketajeshster on man
CPUs in the 80x86amily.

2.8.7 SWITCH/CASE Statements

The HLA (Standard Library) SWITCH statementdakhe folleving form :

switch(regs,)
case(const)
<<stnts;>>

case(const,)
<<stnt Sp>>

case(const,)
<<stnts, >>

def aul t /1 Note that the default section is optional
<<Stmsdef ault =2

endswi t ch;

When this statemenkecutes, it checks thele of rgister aginst the constants cogpst. const,. If a
match is found then the corresponding statemedsuee. HLA places a ¥erestrictions on the SWITCH
statement. First, the HLA SWITCH statement onlyvalia 32-bit rgister as the SWITCHxgression. Sec
ond, all the constants appearing as CASE clauses must be uflguesason for these restrictions will
become clear in a moment.

Most introductory programming tes introduce the SWITCH/CASE statement byplaining it as a
sequence of IFTHEN..ELSEIFstatementsThey might claim that the folling two pieces of HLA code
are equialent:

switch(eax)
case(0) stdout.put(“l1=0");
case(1l) stdout.put(“l=1");
case(2) stdout.put(“l1=2");
endswi t ch;

if(eax =0) then
stdout . put (“1=0")
elseif(eax = 1) then
stdout. put (“1=1")
elseif(eax =2) then
stdout. put (“1=2");
endi f;

Pager76 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

While semantically these twcode sgments may be the same, their implementation is usuaiyefit.
Whereas the IFTHEN..ELSEIFchain does a comparison for each conditional statement in the sequence, the
SWITCH statement normally uses an indirect jump to transfer controytorenof seeral statements with
a single computation. Consider theotexamples presented alm the could be written in assembly kan
guage with the follwing code:

// IF..THEN . ELSE form

nov(i, eax);
test(eax, eax); /1 Check for zero.
jnz Not O;

stdout. put(“1=0");

j np EndCase;

Not O:

cnp(eax, 1);

jne Not1;
stdou. put (“1=1");
j np EndCase;

Not 1:
cnp(eax, 2);
j ne EndCase;
stdout. put(“1=2");
EndCase:

/1 I'ndirect Junp Version

readonl y
JnpThbl : dword[3] :=[&Stnm 0, &Stnil, &Stnm2];
nmov(i, eax);

jmp(JnpTbl [eax*4]);

St O:
stdout. put(“1=0");
j mp EndCase;

Stnt 1:
stdout. put(“1=1");
j np EndCase;

St 2:
stdout.put(“1=2");

EndCase:

The implementation of the IFHEN..ELSEIF ersion is &irly obvious and doestineed much in the
way of planation. The indirect jump &rsion, havever, is probably quite mysterious to you; sodetbnr
sider hav this particular implementation of the SWITCH statemeoitks.

Remember that there are three common forms of the JMP instructiot(smmditional Transfer of
Control (JMP)” on pag&53). The standard unconditional JIMP instructioneltke “jmp EndCase;” instrec
tions in the preious xamples, transfer control directly to the statement label spé@g the JIMP operand.
The second form of the JMP instruction (i.e., “immig’) transfers control to the memory location speci
fied by the address found in a 32-bijister The third form of the JMP instruction, the one tkaraple
above uses, transfers control to the instruction sptibly the contents of a dwd memory locationAs this
example clearly illustrates, that memory location can ugeaddressing modeYou are not limited to the

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager77

LowLevelControlStructs

displacement-only addressing mode. wNiet's consider xactly hav this second implementation of the
SWITCH statement arks.

To begin with, a SWITCH statement requires that you create an array of pointers with each element
containing the address of a statement label in your code (those labels must be attached to the sequence of
instructions to xecute for each case in the SWITCH statement). Inxhmple abwe, theJmpTblarray
senes this purpose. Note that this code initializegpTblwith the address of the statement lat&tistO,

Stmtl andStmt2 The program places this array in the READONdection because the program should
never change thesalues duringecution.

Warning: whenever you initialize an array with a set of address of statement labels as
in this example, the declaration section in which you declare the array (e.g., REA-
DONLY in this case) must be in the same procedure that contains the statement
labels®.

During the &ecution of this code sequence, the program loads the EgiXteewithl’s value. Then
the program uses thisle as an indeinto theJmpTblarray and transfers control to the fdayte address
found at the specé#i location. Br example, if EAX contains zero, the “jmp(JmpTbl[eax*4]);” instruction
will fetch the dvord at addres3mpTbl+0(eax*4=0). Since therBt double word in the table contains the
address oStmtQ the JMP instruction will transfer control to thesfiinstruction folleving the StmtOlabel.
Likewise, if| (and therefore, EAX) contains one, then the indirect JMP instruction fetches the dotdble w
at offset four from the table and transfers control to trs finstruction folleving theStmtllabel (since the
address oBtmtlappears at &et four in the table). Finallyf I/EAX contains tve, then this code fragment
transfers control to the statements failog the Stmt2label since it appears atfedt eight in thelmpThl
table.

Two things should become readily apparent: the more (congecaéises you ke, the more éicient
the jump table implementation becomes (both in terms of space and sgaatiedF/ELSEIF form. Except
for trivial cases, the SWITCH statement is almosegb faster and usually by a tg@ magin. As long as the
CASE \alues are consecudi, the SWTICH statemenession is usually smaller as well.

What happens if you need to include non-conseeu@IASE labels or you cannot be sure that the
SWITCH \alue doesit'go out of range?Vith the HLA SWITCH statement, such an occurrence will trans
fer control to the fist statement after the ENDSWITCH clause.weer, this doesrt’happen in thexam-
ple abae. If variablel does not contain zero, one, orotwthe result of xecuting the code ake is
undefned. Fr example, ifl contains fie when you xecute the code in the pieus example, the indirect
JMP instruction will fetch the dord at ofset 20 (5*4) inImpTbland transfer control to that address. Unfor
tunately JmpThldoesnt have six entries; so the program will wind up fetching taki& of the third double
word following JmpTbland using that as the ¢gt addressThis will often crash your program or transfer
control to an unegiected location. Clearly this code does not belike the HLA SWITCH statement, nor
does it hae desirable bekéor.

The solution is to place avieinstructions before the indirect JMP terify that the SWITCH selection
value is within some reasonable range. In theipus example, wed probably vant to \erify thatl’s value
is in the range 0..2 beforxexuting the JMP instruction. Ifs value is outside this range, the program
should simply jump to thEndCasdabel (this corresponds to droppingadoto the fist statement after the
ENDSWITCH clause).The following code pruides this modifiation:

readonl y
JnpThbl : dword[3] :=[&Stnm 0, &Stntl, &Stnm?2];

nov(i, eax);
cnp(eax, 2); // Verify that | is in the range
j a EndCase; /1 0..2 before the indirect JM.

jmp(JnpTbl [eax*4]);

3. If the SWITCH statement appears in your main program, you must declare the array in the declaration section of your main
program.

Pager78 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

St O:
stdout.put(“1=0");
j np EndCase;

St 1:
stdout.put(“I1=1");
j mp EndCase;

Stnt 2:
stdout. put (“1=2");

EndCase:
Although the gample abwe handles the problem of selectioalues being outside the range zero

through tvo, it still sufers from a couple of sere restrictions:

* The cases must start with the value zero. That is, the minimum CASE constant has to be zero
in this example.
* The case values must be contiguous; there cannot be any gaps between any two case values.

Solving the first problem is easy and you deal with it in two steps. First, you must compare the case
selection value against a lower and upper bounds before determining if the case value is legal, e.qg.,

/'l SWTCH statenent specifying cases 5, 6, and 7:
/1 WARNING this code does *NOT* work. Keep reading to find out why.

mov(i, eax);

cnp(eax, 5);

j b EndCase

cnp(eax, 7); // Verify that | is in the range
j a EndCase; [l 5..7 before the indirect JM.

jmp(JnpTbl [eax*4]);

Stnt5:
stdout. put(“1=5");
j np EndCase;

St 6:
stdout. put(“1=6");
j np EndCase;

St 7:
stdout. put(“1=7");

EndCase:

As you can see, this code adds a pairxtrfaeinstructions, CMP and JB, to test the selectalnesto
ensure it is in the rangevé through seen. If not, control drops @ to theEndCasdabel, otherwise cen
trol transfers via the indirect JMP instruction. Unfortunate$ythe comments point out, this code is ok
Consider what happens iériablei contains the alue five: The code will erify that five is in the rangefe
through seen and then it will fetch the dwd at ofset 20 (5*@size(dard)) and jump to that addresas
before, havever, this loads four bytes outside the bounds of the table and does not transfer control to a
defined location. One solution is to subtract the smallest case seleafienfvom EAX beforexecuting
the JMP instruction. E.g.,

/Il SWTCH statenent specifying cases 5, 6, and 7:
/1 WARNING there is a better way to do this. Keep reading.

readonl y
JnpThbl : dword[3] :=[&Stn5, &Stni6, &Stm7];

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager79

LowLevelControlStructs

nmov(i, eax);

cnp(eax, 5);

j b EndCase

cnp(eax, 7); // Verify that | is in the range
j a EndCase; I/l 5..7 before the indirect JM.
sub(5, eax); /1 5->0, 6->1, 7->2.

jmp(JnpTbl [eax*4]);

Stnt5:
stdout. put(“1=5");
j np EndCase;

St 6:
stdout. put(“1=6");
j np EndCase;

St 7:
stdout.put(“1=7");

EndCase:

By subtracting fie from the value in EAX this code forces EAX to take on the values zero, one, or two prior
to the JMP instruction. Therefore, case selection value five junfitsnt® case selection value six trans
fers control tdStmt§ and case selection value seven jumgstihot7

There is a sneaky way to slightly improve the code above. You can eliminate the SUB instruction by
merging this subtraction into the JMP instruction’s address expression. Consider the following code that
does this:

/'l SWTCH statenent specifying cases 5, 6, and 7:

readonl y
JnpThbl : dword[3] :=[&Stn5, &Stni6, &Stm7];

nmov(i, eax);

cnp(eax, 5);

j b EndCase

cnp(eax, 7); // Verify that | is in the range
j a EndCase; I/l 5..7 before the indirect JM.

jnp(JInpThbl [eax*4 - 5*@i ze(dword)]);

St 5:
stdout. put(“1=5");
j np EndCase;

St 6:
stdout.put(“1=6");
j np EndCase;

Stnt7:
stdout. put (“1=7");

EndCase:

Pager80 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

The HLA SWITCH statement pvides a DERULT clause that>ecutes if the case selectioalwe
doesnt match aw of the casealues. E.g.,

switch(ebx)

case(5) stdout.put(“ebx=5");
case(6) stdout.put(“ebx=6");
case(7) stdout.put(“ebx=7");
def aul t
stdout. put (“ebx does not equal 5, 6, or 7");

endswi t ch;

Implementing the equalent of the DERULT clause in pure assembly languageeig/\easy Just use a
different taget label in the JB andAJinstructions at the lggnning of the code.The following example
implements an HLA SWITCH statement similar to the one immediatelyeabo

// SWTCH statenent specifying cases 5, 6, and 7 with a DEFAULT cl ause:

readonl y
JnpThbl : dword[3] :=[&Stnm5, &Stn6, &Stm7];

nov(i, eax);

cnp(eax, 5);

j b Defaul t Case;

cnp(eax, 7); // Verify that | is in the range

j a Defaul t Case; /1 5..7 before the indirect JM.

jnp(JInpThbl [eax*4 - 5*@i ze(dword)]);

Stnt 5:
stdout.put(“1=5");
j np EndCase;

Stnt 6:
stdout.put(“1=6");
j np EndCase;

Stm 7:
stdout.put(“1=7");
j mp EndCase;

Def aul t Case:
stdout.put(“I does not equal 5, 6, or 7");
EndCase:

The second restriction noted earlihrat the casealues need to be contiguous, is easy to handle by
inserting &tra entries into the jump table. Consider the follg HLA SWITCH statement:

switch(ebx)

case(1) stdout.put(“ebx
case(2) stdout.put(“ebx
case(4) stdout.put(“ebx
case(8) stdout.put(“ebx
def aul t

stdout.put(“ebx is not 1, 2, 4, or 8");

endswi t ch;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager81

LowLevelControlStructs

The minimum switch alue is one and the maximuralve is eight.Therefore, the code before the indi
rect JMP instruction needs to compare thkie in EBX aginst one and eight. If thele is between one
and eight, it still possible that EBX might not contain gdécase selectioralue. Haovever, since the IMP
instruction ind&es into a table of derds using the case selection table, the table must déight dverd
entries. To handle the alues between one and eight that are not case seleatigsysimply put the state
ment label of the dafilt clause (or the label specifying thestfinstruction after the ENDSWITCH if there is
no DEFAULT clause) in each of the jump table entries thattdweve a corresponding CASE clauséhe
following code demonstrates this technique:

readonl y
JnpThl 2: dword : =

[
&Casel, &Case2, &dfltCase, &Case4,

&df | t Case, &dfltCase, &dfltCase, &Case8

cnp(ebx, 1);

jb dfltCase;

cnp(ebx, 8);

ja dfltCase;

jnp(JInpTbl 2[ebx*4 - 1*@i ze(dword)]);

Casel:
stdout. put(“ebx = 1");
jnmp EndCf Swi t ch;

Case2:
stdout. put(“ebx = 2");
jnp EndCf Swi t ch;

Case4:
stdout. put(“ebx = 4");
jnp EndCf Swi t ch;

CaseS8:
stdout. put (“ebx = 8");
jmp EndCf Swi t ch;

df I t Case:
stdout.put(“ebx is not 1, 2, 4, or 8");

EndCr Swi t ch:

There is a problem with this implementation of the SWITCH statement. If the CAlBESvcontain
non-consecwie entries that are widely spaced the jump table could becaraedingly lage. The follow-
ing SWITCH statement auld generate arxgemely lage code fe:

switch(ebx)
case(1) stn1;
case(100) stnt2;
case(1.000) stnm3;

case(10_000) stnt4;
default stntb5;

endswi t ch;

In this situation, your program will be much smaller if you implement the SWITCH statement with a
sequence of IBtatements rather than using an indirect jump statemenievdp keep one thing in mind-

Pager82 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

the size of the jump table does not normalfgetfthe &ecution speed of the program. If the jump table con
tains two entries or tw thousand, the SWITCH statement witeeute the multi-ay branch in a constant
amount of timeThe IF statement implementation requires a linearly increasing amount of time for each
case label appearing in thease statement.

Probably the biggest admtage to using assembly languager@ HLL like Rascal or C/C++ is that you
get to choose the actual implementation. In some instances you can implement a SWITCH statement as a
sequence of IFTHEN..ELSEIFstatements, or you can implement it as a jump table, or you can yised h
of the two:

switch(eax)

case(0) stnmO;
case(1) stnil;
case(2) stn2;
case(100) stnt3;
defaul t stnt4;

endswi t ch;

could become:

cnp(eax, 100);

je DoStnt3;

cnp(eax, 2);

j a TheDef aul t Case;
jmp(JnpTbl [eax*4]);
etc.

Of course, you could do this in HLA using the feliag code high-level control structures:

if(ebx = 100) then stni3
el se
switch(eax)
case(0) stntO;
case(1) stntl;
case(2) stnt2;
G herwi se stnm4
endswi t ch;
endi f;

But this tends to destyahe readability of the program. On the other hand, the extra code to test for 100 in
the assembly language code doesn’t adversely affect the readability of the program (perhaps because it's so
hard to read already). Therefore, most people will add the extra code to make their program more efficient.

The C/C++ SWITCH statement is very similar to the HLA SWITCH statem@here is only one
major semantic diérence: the programmer musipécitly place a BREAK statement in each CASE clause
to transfer control to therfit statement lygnd the SWITCHThis BREAK corresponds to the JMP instruc
tion at the end of each CASE sequence in the assembly code #bihe corresponding BREAK is not
present, C/C++ transfers control into the code of theviiig CASE.This is equialent to leging off the
JMP at the end of the CASE’S sequence:

switch (i)
{
case 0: stntl1;
case 1. stnt2,
case 2: stnt3;
br eak;
case 3. stnt4,

4. The HLA Standard Library SWITCH statement actually provides an option to support C semantics. See the HLA Standard
Library documentation for details.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager83

LowLevelControlStructs

br eak;
default: stnt5;

}

This translates into the folldng 80x86 code:

readonl y
JnpThl : dword[4] :=[&case0, &casel, &case2, &case3];

mov(i, ebx);
cnp(ebx, 3);
j a Defaul t Case;
jrp(JnpTbl [ebx*4]);

case0:
stnt1;

casel:
stnt 2;

case2:
stnt 3;
j mp EndCase; /]l Emtted for the break stnt.

case3:
stnt 4;
j np EndCase; // Emtted for the break stnt.

Def aul t Case:
stnt5;

EndCase:

2.9

State Machines and Indirect Jumps

Another control structure commonly found in assembly language programsiathenabine A state
machine usesstate variableto control program éw. The FOR'RAN programming language piides this
capability with the assigned QQ statement. Certairaviants of C (e.g., GNY'GCC from the Free Seft
ware Foundation) preide similar features. In assembly language, the indirect junyide®a mechanism to
easily implement state machines.

So what is a state machine? kry basic terms, it is a piece of cAdeat keeps track of itsx@cution
history by entering and leig certain “states”. & the purposes of this chaptese’ll not use a ®gry formal
definition of a state machin&Ve’ll just assume that a state machine is a piece of code which (s@jneho
remembers the history of itgecution (itsstatg and &ecutes sections of code based upon that history

In a \ery real sense, all programs are state machiiesCPU rgisters and alues in memory consti
tute the “state” of that machine. Wever, we'll use a much more constrainedwidndeed, for most pur
poses only a singleaviable (or the &lue in the EIP gister) will denote the current state.

Now let’'s consider a concretgample. Suppose you V&a procedure which youant to perform one
operation the fst time you call it, a diérent operation the second time you call it, yet something else the
third time you call it, and then somethinganagain on the fourth callAfter the fourth call it repeats these
four different operations in ordefor example, suppose youant the procedure #8DD EAX and EBX the

5. Note that state machines need not be software based. Many state machines’ implementation are hardware based.

Pager84 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

first time, subtract them on the second call, multiply them on the third, @dé them on the fourti¥ou
could implement this procedure as folk

procedure StateMachi ne;
static

State:byte := 0;
begi n St at eMachi ne;

cnp(State, 0);
jne TryStatel;

/] State 0: Add EBX to EAX and switch to state 1:

add(ebx, eax);
inc(State);
exit StateMachine;

TryStatel:
cnp(State, 1);
jne TryStatez;

/] State 1: subtract ebx fromEAX and switch to state 2:

sub(ebx, eax);
inc(State); /1 State 1 becones State 2.
exit StateMachine;

TryStat e2:
cnp(State, 2);
j ne Mist BeSt at e3;

/1 1f this is state 2, multiply EAX by EAX and switch to state 3:
intmul (ebx, eax);

inc(State); /1 State 2 becones State 3.

exit StateMachine;

/1 1f it isn't one of the above states, we nust be in state 3
/1 So divide eax by ebx and switch back to state zero.

Must BeSt at e3:

push(edx); [l Preserve this ‘cause it gets whacked by D V.
xor (edx, edx); /1 Zero extend EAX i nto EDX

di v(ebx, edx:eax);

pop(edx); /1 Restore EDX s val ue preserved above.

nov(0, State); /] Reset the state back to zero.

end St at eMachi ne;

Technically, this procedure is not the state machine. Instead, it is the va&taldand the CMP/INE
instructions which constitute the state machine.

There is nothing particularly special about this code. It's little more than a SWITCH statement imple-
mented via the IF.. THEN..ELSEonstruct.The only thing special about this procedure is that it remem
bers hav mary times it has been callBdnd behees diferently depending upon the number of caNsile
this is acorrectimplementation of the desired state machine, it is not particuldibiest. The astute
readeyof course, wuld recognize that this code could be made a lagéef using an actual SWITCH state
ment rather than the IFHEN..ELSEIF implementation. ka@ver, there is a betteray...

6. Actually, it remembers how many timé&QD 4, that it has been called.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager85

LowLevelControlStructs

The more common implementation of a state machine in assembly language is tindge@rjump
Rather than hang a state ariable which contains aalue like zero, one, te, or three, we could load the
state \ariable with theaddressof the code toxecute upon entry into the procedure. By simply jumping to
that address, the state machine coule $he tests alve needed toxecute the proper code fragment. €on
sider the follaving implementation using the indirect jump:

procedure StateMachi ne;
static

State:dword : = &St at e0;
begi n St at eMachi ne;

jnp(State);
/] State 0: Add EBX to EAX and switch to state 1:
St at e0:
add(ebx, eax);
nov(&Statel, State);
exit StateMachine;
Statel:
/] State 1: subtract ebx fromEAX and switch to state 2:
sub(ebx, eax);
nov(&State2, State); /] State 1 becones State 2.
exit StateMachine;
St at e2:
/1 1f thisis state 2, multiply EAX by EAX and switch to state 3:
intmul (ebx, eax);
mov(&State3, State); /] State 2 becones State 3.

exit StateMachine;

// State 3: divide eax by ebx and switch back to state zero.

St at e3:
push(edx); Il Preserve this ‘cause it gets whacked by D V.
xor (edx, edx); /1 Zero extend EAX i nto EDX
di v(ebx, edx:eax);
pop(edx); /1 Restore EDX s val ue preserved above.
nov(&State0, State); /] Reset the state back to zero.

end St at eMachi ne;

The JMPinstruction at the lgnning of theStateMabine procedure transfers control to the location
pointed at by th&tatevariable.The frst time you calStateMabineit points at theStateOlabel. Thereafter
each subsection of code sets $tatevariable to point at the appropriate successor code.

2.10

Spaghetti Code

One major problem with assembly language is that égaleeral statements to realize a simple idea
encapsulated by a single HLL statemétik.too often an assembly language programmer will notice that
s/he can se& a fav bytes or gcles by jumping into the middle of some program structifter a fev such
obsenations (and corresponding moddtions) the code contains a whole sequence of jumps in and out of
portions of the code. If you were to dra line from each jump to its destination, the resulting listinglds
end up looking lik someone dumped avlaof spaghetti on your code, hence the term “spaghetti code”.

Pager86 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Spaghetti code sigfrs from one major dveback- it’s difficult (at best) to read such a program agd fi
ure out what it does. Most programs start out in a “structured” form only to become spaghetti code at the
altar of eficieng. Alas, spaghetti code is rarelyfiefent. Since i8 difficult to figure out gactly whats
going on, its very difficult to determine if you can use a better algorithm to ingtbe system. Hence, spa
ghetti code may wind up lesdiefent than structured code.

While it's true that producing some spaghetti code in your programs mayverigseficieny (e.g.,
destructuring your code, sé€&fficient Implementation of IF Statements Assembly Language” on
page772), doing so should alays be a last resort after yoe'tried @erything else and you still han't
achiered what you needdlways start out writing your programs with straight-fard/ IFs and SWITCH
statements. Start combining sections of code (via ifgtructions) oncewerything is working and well
understood. Of course, you shouldigeobliterate the structure of your code unless #iesgare wrth it.

A famous saying in structured programming circleé\fet GOTOs, pointers are the xtemost danger
ous element in a programming languadesimilar saying is “Pointers are to data structures what G
are to control structurédn other words, @oid excessve use of pointers. If pointers agotos are bad, then
the indirect jumpmust be the wrst construct of all since itwnlves both GOOs and pointers! Seriously
though, the indirect jump instructions should leided for casual us&hey tend to ma& a program harder
to readAfter all, an indirect jump can (theoretically) transfer control tplabel within a program. Imagine
how hard it would be to follev the fbw through a program if you ke no idea what a pointer contains and
you come across an indirect jump using that paiftezrefore, you shouldwahys eercise care when using
jump indirect instructions.

2.11 Loops

Loops represent thenfil basic control structure (sequences, decisions, and loops) treatumalkypical
program. Lilke so maw other structures in assembly language, Ydind yourself using loops in places
you've never dreamed of using loops. Most HLLsveamplied loop structures hiddeway. For example,
consider the BSIC statement “IR$ = BETHEN 100”. This IF statement compares avstrings and jumps
to statement 100 if tlyeare equal. In assembly language, yauld need to write a loop to compare each
character ilPA$ to the corresponding characterB§ and then jump to statement 100 if and only if all the
characters matched. IPABIC, there is no loop to be seen in the program. In assembly languageryhis v
simple IF statement requires a loop to compare theithdil characters in the striﬁgThis is lut a small
example which shes hav loops seem to pop uperywhere.

Program loops consist of three components: an optional initialization component, a loop termination
test, and the body of the loophe order with which these components are assembled can dramatically
change the ay the loop operate3hree permutations of these components appear and oer agin.
Because of their frequeyicthese loop structures arevgm special names in highvkd languagesWHILE
loops, REPEA..UNTIL loops (do..while in C/C++), anthfinite loops (e.g.FOREVER..ENDFOR in
HLA).

2.11.1 While Loops

The most general loop is theHILE loop. In HLA it takes the folleving form:
whi |l e(expression) do <<statenents>> endwhil e;
There are tw important points to note about tAHILE loop. First, the test for terminati@ppears at

the bginning of the loop. Second as a direct consequence of the position of the termination test, the body of
the loop may neer execute. If the termination condition isaalys true, the loop body will mer execute.

7. Of course, the HLA Standard Library provides shreeqroutine that compares the strings for you, effectively hiding the
loop even in an assembly language program.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager87

LowLevelControlStructs

Consider the follwing HLA WHILE loop:

nov(O, |);
while(| < 100) do

inc(I);

endwhi | e;

The “mov(0, |);” instruction is the initialization code for this lodgs a loop control &rfiable because
it controls the recution of the body of the loop. “I<100” is the loop termination condifitvat is, the loop
will not terminate as long dss less than 100The single instruction “inc(1);” is the loop badkhis is the
code that gecutes on each pass of the loop.

Note that an HLANHILE loop can be easily synthesized using IF and JMP statementscxdimple,
the HLAWHILE loop presented abe can be replaced by:

mov(O, |);

Whi | eLp:

if(1 <100) then

inc(i);
jnp Wil eLp;

endi f;

More generallyany WHILE loop can be built up from the following:

<< optional initialization code>>

Uni queLabel :
if(not_termnation _condition) then

<</ oop body>>
j mp Uni quelLabel ;

endi f;

Therefore, you can use the techniques from earlier in this chaptenrtchstatements to assembly lan
guage along with a single JMP instruction to produce a WHILE loop. The example we've been looking at in
this section translates to the following “pure” 80x86 assembly8code

mov(O, i);
Whi | eLp:
cnp(i, 100);
jnl Wi | eDone;
inc(i);
jmp Wi | eLp;

Wi | eDone:

2.11.2 Repeat..Until Loops

The REPEA..UNTIL (do..while) loop tests for the termination condition at the end of the loop rather
than at the bginning. In HLA, the REPER.UNTIL loop tales the follaving form:

<< optional initialization code >>
r epeat

8. Note that HLA will actually corert most WHILE statements to different 80x86 code than this section presents. -The rea
son for the difference appears a little later in this text when we explore how to write more efficient loop code.

Pager88 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

<<l oop body>>

until (termnation _condition);

This sequencexecutes the initialization code, the loop bgaitiyen tests some condition to see if the loop
should repeat. If the boolearpeession ealuates todlse, the loop repeats; otherwise the loop terminates.
The two things to note about the REPEAJNTIL loop are that the termination test appears at the end of the
loop and, as a direct consequence of this, the loop badysixecutes at least once.

Like theWHILE loop, the REPEA.UNTIL loop can be synthesized with an IF statement and a JMP .
You could use the folleing:

<< jnitialization code >>
SoneUni queLabel :

<< | oop body >>
if(not_the termination_condition) then jnp Somelni queLabel ; endif;

Based on the material presented in theviptes sections, you can easily synthesize REPENTIL
loops in assembly languag@&he followving is a simple xample:

r epeat

stdout.put(“Enter a nunber greater than 100: “);
stdin.get(i);

until(i > 100);
/1 This translates to the follow ng | F/ JMP code:
Repeat Lbl :

stdout. put(“Enter a number greater than 100: *);
stdin.get(i);

if(i <=100) then jnp RepeatLbl; endif;
/1 1t also translates into the follow ng “pure” assenbly code:
Repeat Label :

stdout.put(“Enter a nunber greater than 100: “);
stdin.get(i);

cnp(i, 100);
j ng Repeat Lbl ;

2.11.3 FOREVER..ENDFOR Loops

If WHILE loops test for termination at thediening of the loop and REPHAUNTIL loops check for
termination at the end of the loop, the only place left to test for termination is in the middle of thghoop.
HLA FOREVER..ENDFOR loop, combined with the BREAK and BREAKIF statementsidaahis capa
bility. The FOREVER..ENDFOR loop tek the folleving form:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager89

LowLevelControlStructs
forever
<< l oop body >>

endfor;

Note that there is noxplicit termination condition. Unless otherwise ypiaded for the FOR
EVER..ENDFOR construct simply forms an mife loop. Loop termination is typically handled by a
BREAKIF statement. Consider the faiang HLA code that empls a FOREVER..ENDFOR construct:

forever

stdin.get(character);

breaki f(character = ‘.’);
stdout. put (character);

endf or;

Corverting a FOREVER loop to pure assembly languagevisltriAll you need is a label and a JMP
instruction. The BREAKIF statement in thiscample is really nothing more than an IF and a JMP instruc
tion. The “pure” assembly languagergion of the code alie looks something lithe follaving:

foreverLabel:

stdin.get(character);
cnp(character, ‘.’);

j e ForlsDone;

stdout. put(character);
jnp foreverLabel ;

For | sDone:

2.11.4 FOR Loops

The FOR loop is a special form of thieHILE loop that repeats the loop body a speaifumber of
times. In HLA, the FOR loop tals the folleving form:

for(<<Initialization Stnt>> <<Term nation Expression>> <<inc_Stnt>>) do
<< statenents >>

endfor;

This is completely equalent to the follaing:

<< Initialization Stnt>>
whi |l e(<<Termi nation Expression>>) do

<< statenents >>
<<i nc_Stnt>>

endwhi | e;

Traditionally, the FOR loop has been used to process arrays and other objects accessed in sequential
numeric order One normally initializes a loop contrahnvable with the initialization statement and then
uses the loop controbviable as an indeinto the array (or other data type), e.g.,

for(nov(0, esi); esi < 7; inc(esi)) do

Pager90 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures
stdout.put(“Array Henment = “, SoneArray[esi*4], nl);

endf or;

To corvert this to “pure” assembly languagegleby translating the FOR loop into an eglént
WHILE loop:

nov(0, esi);
while(esi <7) do

stdout.put(“Array Herment = “, SomeArray[esi*4], nl);
inc(esi);
endwhi | e;

Now, using the techniques from the sectiolV@HILE loops (se€¢While Loops” on pag&87), trans
late the code into pure assembly language:

nmov(O, esi);

Whi | eLp:

cnp(esi, 7);

jnl EndWi | eLp;

stdout.put(“Array Hement = “, SomeArray[esi*4], nl);

inc(esi);
jnp Wi | eLp;

EndWii | eLp:

2.11.5 The BREAK and CONTINUE Statements

The HLA BREAK and CONTINUE statements both translate into a single JMP instruciiba.

BREAK instruction eits the loop that immediately contains the BREAK statement; the CONTINUE state

ment restarts the loop that immediately contains the CONTINUE statement.

Corverting a BREAK statement to “pure” assembly languageiig gasy Just emit a JIMP instruction
that transfers control to thedt statement folleing the ENDxxxxclause of the loop toxé. This is easily
accomplished by placing a label after the associated END clause and jumping to thatHabfellowing
code fragments demonstrate this technique for dnews loops:

I/ Breaking out of a forever |oop:

forever
<<st nm s>>
/1 break;
j mp BreakFr onfor ever;
<<st nt s>>
endf or;
Br eakFr onfor ever :

/1 Breaking out of a FOR | oop;
for(<<initStm>> <<expr>> <<incStn>>) do
<<st nt s>>
/1 br eak;
j mp Br kFrontfor;
<<st nt s>>
endfor;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager91l

LowLevelControlStructs
Br kFr onfor :
/1 Breaking out of a WH LE | oop:

whi | e(<<expr>>) do
<<st nt s>>
/I br eak;
j np Br kFronmi | e;
<<st nt s>>
endwhi | e;
Br kFr omi | e:

/'l Breaking out of a REPEAT..UNTIL | oop:

r epeat
<<st m s>>
/1 break;
jmp BrkFronRpt ;
<<st m s>>
until (<<expr>>);
Br kFr onRpt :

The CONTINUE statement is slightly more faifilt to implement that the BREAK statementhe
implementation still consists of a single JMP instructionydver the taget label doeshwind up going in
the same spot for each of thefelient loops.The following figures shav where the CONTINUE statement
transfers control for each of the HLA loops:

Pager92 © 2001, By Randall Hyde Version: 9/9/02

Figure 2.2 CONTINUE

Low Level Control Structures

f orever -

<<st nt s>>
conti nue;

<<st nmt s>>

endf or ;

Destination for the FOREVER Loop

Figure 2.3 CONTINUE

<<st nt s>>
conti nue;
<<st nt s>>

endwhi | e;

whi l e(<<expr>>) do

Destination and the WHILE Loop

for(

endf o

<<initStnt>> <<expr>>;

<<st nt s>>
conti nue;
<<st nt s>>

rs

<<incStnt>>) do

Note: CONTINUE forces the execution of the
<<incStmt>> clause and then transfers control
to the test for loop termination.

Figure 2.4 CONTINUE

Destination and the FOR Loop

r epeat

<<st nt s>>
conti nue;

Beta Draft - Do not distribute

<<st nt s>>

until (<<expr>>);

© 2001, By Randall Hyde

Page793

LowLevelControlStructs

Figure 2.5 CONTINUE Destination and the REPEAT..UNTIL Loop

The following code fragments demonstratevio corvert the CONTINUE statement into an apprepri
ate JMP instruction for each of these loop types.

forever..continue..endfor

/1 Conversion of forever |oop w continue
/1l to pure assenbly:
f orever
<<st m s>>
conti nue;
<<st m s>>
endf or;

/1 Converted code:

foreverlLbl :
<<st m s>>
jnp foreverlbl;
<<st m s>>

while..continue..endwhile

/1 Conversion of while |oop w continue
/1 into pure assenbly:

whi l e(<<expr>>) do
<<st nt s>>
conti nue;
<<st nt s>>

endwhi | e;

/1 Converted code:
whi Label :

<<Code to eval uate expr>>
Jcc EndOWiile; // Skip loop on expr failure.

<<stnt s>
jnp whl Label ; // Junp to start of |oop on continue.
<<st m s>>
jnp whl Label ; // Repeat the code.
EndCf whi | e:

for..continue..endfor

/1 Conversion for a for |oop w continue
/1 into pure assenbly:

for(<<initStm>> <<expr>> <<incStnm>>) do
<<st nt s>>
conti nue;
<<st nt s>>

endf or;

/] Converted code

<<ini t St nt >>
For LpLbl :

Pager94 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

<<Code to eval uate expr>>

Jcc EndC For; // Branch if expression fails.
<<st nt s>>
jmp ContFor; // Branch to <<incStn>> on continue.
<<st m s>>

Cont For :

<<i ncSt nt >>

j np ForLpLbl ;
EndCf For :

repeat..continue..until

r epeat
<<st nt s>>
conti nue;
<<st nm s>>
until (<<expr>>);

/1 Converted Code:

Rot LpLbl :
<<st m s>>

jnp ContRpt; // Continue branches to | oop termnation test.
<<st nt s>>

Cont Rpt :

<<code to test expr>>

Jcc Rptlplbl; // Junps if expression eval uates fal se.

2.11.6 Register Usage and Loops

Given that the 80x86 accessegisters muchdster than memory locationsgisters are the ideal spot
to place loop controlariables (especially for small loops). Mever, there are some problems associated
with using rgisters within a loopThe primary problem with usinggesters as loop controhviables is that
registers are a limited resourdeherefore, the follwing will not work properly:

nov(8, ¢x);
| oopl:
nmov(4, cx);
| oop2:
<<st nt s>>
dec(cx);
jnz | oop2;

dec(cx);
jnz | oopl;

The intent here, of coursea®/to create a set of nested loops, that is, one loop inside afbthemer
loop (Loop? should repeat four times for each of the eigletcations of the outer loof.¢opd). Unfortu-
nately both loops use the samgisger as a loop controbviable..Therefore, this will form an infite loop
since CX will be set to zero at the end of thstfioop. Since CX is alays zero upon encountering the-sec
ond DEC instruction, control will elays transfer to the LOOP1 label (since decrementing zero produces a
non-zero result)The solution here is towaand restore the CXgister or to use a ddrent rgister in place
of CX for the outer loop:

mov(8, cx);

| oopl:
push(cx);
nov(4, ¢x);
| oop2:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager95

LowLevelControlStructs

<<st m s>>
dec(cx);
jnz | oop2;

pop(cx);
dec(cx);
jnz | oopl;

or:

nov(8, dx);
| oopl:
mov(4, cXx);
| oop2:
<<st nt s>>
dec(cx);
jnz | oop2;

dec(dx);
jnz | oopl;

Register corruption is one of the primary sources afshin loops in assembly language programs,
always leep an ge out for this problem.

2.12 Performance Improvements

The 80x86 microprocessorgezute sequences of instructions at blinding speEastefore, youl
rarely encounter a program that isvelvhich doesn’ contain ag loops. Since loops are the primary source
of performance problems within a program,yttage the place to look when attempting to speed up your
software.While a treatise on hoto write eficient programs is lyend the scope of this chapténere are
some things you should bevare of when designing loops in your prograifiisey’re all aimed at remang
unnecessary instructions from your loops in order to reduce the timestttalkgecute one iteration of the
loop.

2.12.1 Moving the Termination Condition to the End of a Loop

Consider the folleing flow graphs for the three types of loops presented earlier:
REPEA..UNTIL loop:

Initialization code
Loop body

Test for termnation

Code foll owi ng the | oop

WHILE loop:

Initialization code
Loop termnation test
Loop body
Junp back to test
Code foll owi ng the | oop

FOREVER..ENDFOR loop:

Initialization code
Loop body, part one
Loop termnation test

Pager96 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Loop body, part two
Junp back to | oop body part 1
Code foll owing the | oop

As you can see, the REPEAJNTIL loop is the simplest of theubch.This is refected in the assembly
language code required to implement these loops. Consider theifigl REPEA..UNTIL and WHILE
loops that are identical:

/1 Exanpl e invol ving a WH LE | oop:

nov(edi, esi);
sub(20, esi);
while(esi <= edi) do

<<st nt s>>
inc(esi);

endwhi | e;
/1 Conversion of the code above into pure assenbly | anguage:

mov(edi, esi);
sub(20, esi);
whi Lbl :

cnp(esi, edi);
jnle EndC Wi | e;

<<stnt s>>
inc(esi);
<<st nt s>>
j np whi Lbl ;

EndCr Whi | e:

/| Exanpl e i nvol ving a REPEAT. . UNTI L | oop:

nov(edi, esi);
sub(20, esi);
r epeat

<<st nt s>>
inc(esi);

until (esi > edi);
/1 Conversion of the REPEAT..UNTIL |oop into pure assenbly:

r pt Label :
<<stnt s>>
inc(esi);
cnp(esi, edi);
j ng rptLabel ;

As you can see by carefully studying the@mion to pure assembly language, testing for the termina
tion condition at the end of the loop alled us to remee a JIMP instruction from the loophis can be sig
nificant if this loop is nested inside other loops. In the precediam@e there wasnt a problem with
executing the body at least oncevén the defiition of the loop, you can easily see that the loop will be
executed gactly 20 timesThis suggests that the a@nsion to a REPER.UNTIL loop is trvial and alvays
possible. Unfortunatelyt's not alvays quite this easyonsider the follwing HLA code:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager97

LowLevelControlStructs

while(esi <= edi) do
st nts>
inc(esi);

endwhi | e;

In this particular gample, we heen't the slightest idea what ESI contains upon entry into the loop.
Therefore, we cannot assume that the loop body xeltete at least once. So we must test for loop termina
tion before gecuting the body of the loojphe test can be placed at the end of the loop with the inclusion of
a single JMP instruction:

jnp Wil Test;
TopCf Loop:
<<st m s>>
inc(esi);
Wl Test :
cnp(esi, edi);
j e TopOf Loop;

Although the code is as long as the origWlILE loop, the JMP instruction executes only once rather than

on each repetition of the loop. Note that this slight gain in efficiency is obtained via a slight loss in-readabil
ity. The second code sequence above is closer to spaghetti code that the original implementation. Such is
often the price of a small performance gain. Therefore, you should carefully analyze your code to ensure that
the performance boost is worth the loss of clarity. More often than not, assembly language programmers sac
rifice clarity for dubious gains in performance, producing impossible to understand programs.

Note, by the way, that HLA translates its WHILE statement into a sequence of instructions that test the
loop termination condition at the bottom of the loop using exactly the technique this section describes.
Therefore, you do not have to worry about the HLA WHILE statement introducing slower code into your
programs.

2.12.2 Executing the Loop Backwards

Because of the nature of thadk on the 80x86, loops which range from some numlyen tt (or up
to) zero are more &€ient than ay other Compare the follwing HLA FOR loop and the code it generates:
for(mov(1, J); J <= 8; inc(J)) do

<<st nt s>>
endf or;

/1 Conversion to pure assenbly (as well as using a repeat..until form:

mv(1, J);

For Lp:
<<st m s>>
inc(J);
cnp(J, 8);
j nge ForLp;

Now consider another loop that also has eight iteratianisfums its loop controlariable from eight
down to one rather than one up to eight:

nov(8, J);

LoopLbl :
<<st nt s>>
dec(J);
jnz LoopLbl ;

Note that by running the loop from eightwdoto one we saved a comparison on each repetition of the loop.

Pager98 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Unfortunately you cannot force all loops to run backds. Havever, with a little efort and some coer
cion you should be able to write nyaROR loops so theoperate backards. By seing the &ecution time
of the CMP instruction on each iteration of the loop the code mayaster f

The xample abwe worked out well because the loop ran from eightid@o oneThe loop terminated
when the loop controlariable became zer@hat happens if you need tgeeute the loop when the loop
control \ariable goes to zerodFexample, suppose that the loop ebmeeded to range fromves davn to
zero.As long as the upper bound is pogti you can substitute the JNiStruction in place of the JNZ
instruction abwe to repeat the loop some specifumber of times:

mov(7, J);

LoopLbl :
<<st nt s>>
dec(J);
jns LoopLbl ;

This loop will repeat eight times withtaking on the &lues seen davn to zero on eachxecution of the
loop.When it decrements zero to minus one, it sets the sigrafid the loop terminates.

Keep in mind that somelues may look posite kut they are neative. If the loop control ariable is a
byte, then wlues in the range 128..255 argai@e. Likewise, 16-bit alues in the range 32768..65535 are
negative. Therefore, initializing the loop controlaviable with ag value in the range 129..255 or
32769..65535 (orof course, zero) will cause the loop to terminate after a sirgtigon.This can get you
into a lot of trouble if youe not careful.

2.12.3 Loop Invariant Computations

A loop invariant computation is some calculation that appears within a loop Wegtsayields the same
result.You needr’do such computations inside the logpu can compute them outside the loop and +efer
ence the alue of the computation inside the lodje folloving HLA code demonstrates a loop which €on
tains an imariant computation:

for(nov(O, eax); eax < n; inc(eax)) do

nov(eax, edx);
add(j, edx);
sub(2, edx);
add(edx, k);

endf or;

Sincej never changes throughout theegution of this loop, the subgeression “j-2” can be computed
outside the loop and italue used in thex@ression inside the loop:

mov(j, ecx);
sub(2, ecx);
for(nov(O, eax); eax < n; inc(eax)) do

nov(eax, edx);
add(ecx, edx);
add(edx, k);

endfor;

Still, the walue in ECX neer changes inside this loop, so althoughveeliminated a single instruction
by computing the subxpression “j-2” outside the loop, there is still amanant component to this calcula
tion. Since we note that thisvariant componentxecutesn times in the loop, we can translate the code
above to the folloving:

mov(j, ecx);
sub(2, ecx);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager99

LowLevelControlStructs

intmul (n, ecx); /1 Conpute n*(j-2) and add this into k outside
add(ecx, k); /1 the | oop.
for(mov(O, eax); eax < n; inc(eax)) do

add(eax, k);
endfor;

As you can see, wee shrunk the loop body from four instructions down to one. Of course, if you're really

interested in improving the efficiency of this particular loop, you'd be much better off (most of the time)
computingk using the formula:

k= k+((,,+1)mmp)+(u¥u2

This computation fok is based on the formula:

ii - gn+12)><(n!
i=0

However, simple computations such as this one aren't always possible. Still, this demonstrates that a better
algorithm is almost always better than the trickiest code you can come up with.

Removing invariant computations and unnecessary memory accesses from a loop (particularly an inner
loop in a set of nested loops) can produce dramatic performance improvements in a program.

2.12.4 Unraveling Loops

For small loops, that is, those whose body is onlyadtatements, theverhead required to process a
loop may constitute a sigrifint percentage of the total processing tinoe.ekample, look at the follwing
Pascal code and its associated 80x86 assembly language code:

FOR1 := 3 DOMNTOO DOA[I] :=0;

mv(3, |);

LoopLbl :
mov(|, ebx);
nmov(0, A ebx*4]);
dec(|);
jns LoopLbl ;

Each iteration of the loop requires four instructions. Only one instruction is performing the desired
operation (mwing a zero into an element &f. The remaining three instructions control the repetition of the
loop. Therefore, it taks 16 instructions to do the operation logically required by four

While there are manimprovements we could makto this loop based on the information presented
thus far, consider carefully»actly what it is that this loop is doing--gtsimply storing four zeros in#[0]
throughA[3]. A more eficient approach is to use four MQOnstructions to accomplish the same tasi. F
example, ifAis an array of dards, then the folleing code initializeA much fster than the code alm

mov(0, ALO]);

mov(0, Al4]);

mov(0, A8l);

mov(0, A 12]);

Although this is a tiial example, it shws the benefiof loop unraeling. If this simple loop appeared

buried inside a set of nested loops, the 4:1 instruction reduction could possibly double the performance of
that section of your program.

Of course, you cannot urvel all loops. Loops thatxecute a ariable number of times cannot be wara
eled because there is rarely ayo determine (at assembly time) the number of times the loopedlte.

Page800 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures

Therefore, unngeling a loop is a process best applied to loops ttextute a knan number of times (and
the number of times is kmm at assembly time.

Even if you repeat a loop somedd number of iterations, it may not be a good candidate for loop
unraveling. Loop unreeling produces impres& performance impk@ments when the number of instruc
tions required to control the loop (and handle otlverteead operations) represent a sigaiit percentage
of the total number of instructions in the loop. Had the loo&lcontained 36 instructions in the body of
the loop (eclusive of the four erhead instructions), then the performance imgmeent vould be, at best,
only 10% (compared with the 300-400% itnnenjoys). Therefore, the costs of uweling a loop, i.e., all the
extra code which must be inserted into your program, quickly reaches a point of diminishing returns as the
body of the loop gnes lager or as the number of iterations increases. Furthermore, entering that code into
your program can become quite a chdreerefore, loop unkeeling is a technique best applied to small
loops.

Note that the superscalar x86 chips (Pentium and lateg)dnanc prediction hadware and use other
techniques to impre performance. Loop unrolling on such systemsynatually slow downthe code
since these processors are optimizedkezate short loops.

2.12.5 Induction Variables

Consider the folling modification of the loop presented in the\poais section:
FCRI :=0 TO 255 DO csetVar[I] := {};

Here the program is initializing each element of an array of character sets to the empite sttaight-for
ward code to achieve this is the following:

mov(0, i);
FLp:

/1 Conpute the index into the array (note that each el enent
// of a CSET array contains 16 bytes).

nmov(i, ebx);
shl (4, ebx);

/1 Set this elenent to the enpty set (all zero bits).

nov(O, csetVar[ebx]);
nov(O, csetVar[ebx+4]);
nov(O, csetVar[ebx+8]);
mov(O, csetVar[ebx+12]);
inc(i);

cnp(i, 256);

ib FLp;

Although unraeling this code will still produce a performance immment, it will tale 1024 instruc
tions to accomplish this task, too nyafor all but the most time-critical applications. Wever, you can
reduce the>ecution time of the body of the loop usimgluction variablesAn induction \ariable is one
whose alue depends entirely on thalwe of some otheraviable. In the xample abwe, the indg into the
arraycset\ar tracks the loop controlariable (its alvays equal to thealue of the loop controlariable times
16). Sincd doesnt appear aywhere else in the loop, there is no sense in performing all the computations on
i. Why not operate directly on the array indelue?The follonving code demonstrates this technique:

nmov(0, ebx);

FLp:
nmov(O, csetVar[ebx]);
nov(O, csetVar[ebx+4]);
nov(O, csetVar[ebx+8]);

Beta Draft - Do not distribute © 2001, By Randall Hyde PageS01

LowLevelControlStructs

nov(O, csetVar[ebx+12]);

add(16, ebx);
cnp(ebx, 256*16);
jb FLp;

The induction that tads place in thisxample occurs when the code increments the loop cordrl v
able (mwed into EBX for eficieng/ reasons) by 16 on each iteration of the loop rather than by one.- Multi
plying the loop control ariable by 16 allws the code to eliminate multiplying the loop contratiable by
16 on each iteration of the loop (i.e., this atous to remee the SHL instruction from the pfieus code).
Further since this code no longer refers to the original loop contndable (), the code can maintain the
loop control ariable strictly in the EBX igister

2.13

Hybrid Control Structures in HLA

The HLA high level language control structuresvieaa fav dravbacks: (1) thg're not true assembly
language instructions, (2) compleoolean gpressions only support short circuitatuation, and (3) the
often introduce indicient coding practices into a language that most people only use wlyenett to
write high-performance code. On the other hand, while the 80w8&\el control structures let you write
efficient code, the resulting code mry difficult to read and maintain. HLA prioles a set dfiybrid control
structures that all® you to use pure assembly language statementgmtoate booleanx@ressions while
using the high keel control structures to delineate the statements controlled by the boghkeess@ns.The
result is code that is much more readable than pure assembly language without being a wholefiot less ef
cient.

HLA provides tybrid forms of the IEELSEIE.ELSE..ENDIF WHILE..ENDWHILE,
REPEA..UNTIL, BREAKIF, EXITIF, and CONTINUEIF statements (i.e., those thablive a boolean
expression). Br example, a fibrid IF statement tads the folloving form:

if(#{ <<statenents>>}#) then <<statenents>> endif;

Note the use of #{ and }# operators to surround a sequence of instructions within this stafEmsers.
what differentiates the hybrid control structures from the standard high level language control structures.
The remaining hybrid control structures take the following forms:

whil e(#{ <<statenents>> }#) <<statenents>> endwhile;
repeat <<statenents>> until(#{ <<statenents>> }#);
breakif(#{ <<statenents>> }#);

exitif(#{ <<statenents>>}#);

continuei f(#{ <<statenents>> }#);

The statements within the curly braces replace the normal boodg@ession in an HLA high {el con
trol structure. These particular statements are special arsa$ HLA defies tvwo labels,true andfalseg
within their contat. HLA associates the lab&lie with the code that auld normally &ecute if a boolean
expression were present and thgireessions result vas true. Similarly HLA associates the labillsewith
the code that muld execute if a booleanxpression in one of these statemenaated &lse. As a simple
example, consider the folldng two (equvalent) IF statements:

if(eax < ebx) then inc(eax); endif;

if

(#
cnp(eax, ebx);
jnl fal se;

}#) then
inc(eax);

Page802 © 2001, By Randall Hyde Version: 9/9/02

Low Level Control Structures
endif;

The JNL that transfers control to tfaselabel in this latterxeample will skip @er the INC instruction
if EAX is not less than EBX. Note that if EAX is less than EBX then consitd through to the INC
instruction. This is roughly equialent to the folling pure assembly code:

cnp(eax, ebx);
jnl fal seLabel
inc(eax);
f al seLabel
As a slightly more compleexample, consider the statement

if(eax >=J & eax <= K) then sub(J, eax); endif;

The following hybrid IF statement accomplishes the o
if

(#
cnp(eax, J);
jnge fal se
cnp(eax, K);
jnle fal se

}#) then

sub(J, eax);
endi f;

As one fhal example of the yibrid IF statement, consider the fallmg:

/1 if(((eax > ebx) &% (eax < ecx)) || (eax = edx)) then mov(ebx, eax); endif;

if

(#
cnp(eax, edx);
je true;
cnp(eax, ebx);
jng fal se;
cnp(eax, ecx);
jnl fal se;

}#) then
nov(ebx, eax);

endif;

Since thesexamples are rather wial, they don't really demonstrate momuch more readable the code
can be when usingybrid statements rather than pure assembly codevekén one thing you notice is that
the use of ybrid statements eliminate the need to insert labels throughout your Toieis what mags
your programs easier to read and understand.

For the IF statement, thrue label corresponds to tA@HEN clause of the statement; tiadselabel cor
responds to the ELSEIELSE, or ENDIF clause (whicter follows theTHEN clause). &r theWHILE
loop, thetrue label corresponds to the body of the loop whileféiteelabel is attached to thedt statement
following the corresponding ENDHILE. For the REPEA..UNTIL statement, th&rue label is attached to
the code follaving the UNTIL clause while thialselabel is attached to thedt statement of the body of the
loop. The BREAKIF, EXITIF, and CONTINUEIF statements associate fadselabel with the statement
immediately follaving one of these statements,ttessociate theue label with the code normally asseci
ated with a BREAK, EXITor CONTINUE statement.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page803

LowLevelControlStructs

2.14 Putting It All Together

In this chapter we'e talen a look at the l@-level, or “pure” assembly language, implementation of se
eral common control structuredlthough HLAs high lerel control structures are easy to use and quite a bit
more readable than theimeevel equvalents, sometimesfefieney demands a @-level implementation.
This chapter presents the blueprints for such transformations.

While this chapter acers the principle high el control structures and their translation to assembly
language, there are some additional control structures that this chapter does not ciesitiens and the
TRY..ENDTRY statement are twgood @amples. Fear not, i@ver, the wlume onAdvancedAssembly
Language Programming will tidy up those loose ends.

Page304 © 2001, By Randall Hyde Version: 9/9/02

	Low-Level Control Structures Chapter Two
	2.1 Chapter Overview
	2.2 Low Level Control Structures
	2.3 Statement Labels
	2.4 Unconditional Transfer of Control (JMP)
	2.5 The Conditional Jump Instructions
	2.6 “Medium-Level” Control Structures: JT and JF
	2.7 Implementing Common Control Structures in Assembly Language
	2.8 Introduction to Decisions
	2.8.1 IF..THEN..ELSE Sequences
	2.8.2 Translating HLA IF Statements into Pure Assembly Language
	2.8.3 Implementing Complex IF Statements Using Complete Boolean Evaluation
	2.8.4 Short Circuit Boolean Evaluation
	2.8.5 Short Circuit vs. Complete Boolean Evaluation
	2.8.6 Efficient Implementation of IF Statements in Assembly Language
	2.8.7 SWITCH/CASE Statements

	2.9 State Machines and Indirect Jumps
	2.10 Spaghetti Code
	2.11 Loops
	2.11.1 While Loops
	2.11.2 Repeat..Until Loops
	2.11.3 FOREVER..ENDFOR Loops
	2.11.4 FOR Loops
	2.11.5 The BREAK and CONTINUE Statements
	2.11.6 Register Usage and Loops

	2.12 Performance Improvements
	2.12.1 Moving the Termination Condition to the End of a Loop
	2.12.2 Executing the Loop Backwards
	2.12.3 Loop Invariant Computations
	2.12.4 Unraveling Loops
	2.12.5 Induction Variables

	2.13 Hybrid Control Structures in HLA
	2.14 Putting It All Together

